掌握数据相关性新利器:基于R、Python的Copula变量相关性分析及AI大模型应用探索
在工程、水文和金融等各学科的研究中,总是会遇到很多变量,研究这些相互纠缠的变量间的相关关系是各学科的研究的重点。虽然皮尔逊相关、秩相关等相关系数提供了变量间相关关系的粗略结果,但这些系数都存在着无法克服的困难。例如,皮尔逊相关系数只能反映变量间的线性相关,而秩相关则更多的适用于等级变量。大多数情况下变量间的相关性非常复杂,而且随着变量取值的变化而变化,而这些相关系数都是全局性的,因此无法提供变量间相关性变化的细节;更严重的是这些系数只提供了数值,对于变量间相关的具体结构和函数一无所知。
为了克服各种相关系数的缺点,基于Sklar定理的Copula理论被提出和发展。Copula不但可以提供不同取值范围内变量间相关的结构和函数细节,而且可以应用于相关时间序列及回归分析的研究中,大大拓展了回归及时间序列分析的适用范围。Copula理论一经提出就受到各个学科的广泛关注,现今在水文、工程、金融及环境领域得到广泛应用,已经成为这些领域的热门研究工具。
相对于相关系数,Copula理论比较深奥不易掌握,需要借助专门的软件或工具,运用规范的统计学方法才能得到正确的结果。
专题一 R及Python语言及相关性研究初步
1.R语言及Python的基本操作
2.各类相关系数的区别及实现
3.R语言及Python中Copula相关包和函数
专题二 二元Copula理论与实践(一)
1.Sklar定理与不变性原理
2.椭圆分布与椭圆Copula
3.阿基米德Copula
专题三 二元Copula理论与实践(二)
【R语言为主】
1.极值相依性与极值Copula
2.Copula函数的变换:旋转与混合Copula
3.边缘分布估计:参数与非参数方法
4.Copula函数的估计
5.Python的相关实现
专题四 Copula函数的统计检验与选择
【R语言为主】
1.相依性与对称性检验
2.拟合优度与其它统计检验
3.极值相关性检验
4.模型选择
5.Python相关实现
专题五 高维数据与Vine Copula
【R语言】
1.条件分布函数
2.C-Vine Copula
3.D-Vine Copula
专题六 正则Vine Copula(一)
【R语言】
1.图论基础与正则Vine树
2.正则Vine Copula族及其简化
3.正则Vine Copula的模拟
专题七 正则Vine Copula(二)
【R语言】
1.Vine Copula的渐近理论与极大似然法估计
2.正则Vine Copula模型的选择
3.模型检验比较
专题八 时间序列中的Copula
【R语言】
1.时间序列理论初步(稳定性检验、相依性检验)
2.Markov假设
3.时间序列的Copula
专题九 Copula回归
【R语言】
1.回归的基本理论
2.广义线性回归
3.高斯Copula回归
4.一般Copula回归
专题十 Copula下的结构方程模型
【R语言】
1.结构方程模型的基本原理
2.R语言的结构方程模型
3.Copula结构方程模型的构建
4.模型检验
专题十一 Copula贝叶斯网络
【Python语言】
1.什么是贝叶斯网络
2.贝叶斯网络与Copula模型的相似性
3.Copula贝叶斯网络的原理
4.Copula贝叶斯网络的Python实现
专题十二 Copula的贝叶斯估计
【Python语言】
1.贝叶斯统计学基本原理
2.Python中的贝叶斯统计初步
3.Copula贝叶斯先验及其估计
4.Python中实现Copula的贝叶斯估计
专题十三 AI辅助的Copula统计学
1.大语言模型是什么?以及它的强项与弱项
2.主要AI的比较与推荐
3.提示词的要点
4.利用AI辅助总结理论及输入要点
5.Python与R语言的人工智能注释
6.AI如何辅助Copula统计编程
7.利用AI辅助理解结果
注:以上各章节内容均有代码及数据分析实操
更多应用
Python+ChatGPT,Python与ChatGPT结合进行数据分析、自动生成代码、人工智能建模、论文高效撰写等-CSDN博客文章浏览阅读913次,点赞20次,收藏24次。掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络、YOLO目标检测、自编码器等)的基本原理及Python、PyTorch代码实现方法。https://blog.csdn.net/WangYan2022/article/details/135334554?spm=1001.2014.3001.5502ChatGPT:让AI大语言模型与专业知识完美融合,助力科研工作飞跃发展!-CSDN博客文章浏览阅读505次,点赞11次,收藏10次。ChatGPT,作为一种强大的自然语言处理模型,具备显著优势,能够帮助您在各个领域取得突破【最新增加Claude3、Gemini、Sora、GPTs讲解及AI领域中的集中大模型的最新技术】
https://blog.csdn.net/weixin_46747075/article/details/136650739?spm=1001.2014.3001.5502R语言贝叶斯网络模型、INLA下的贝叶斯回归、R语言现代贝叶斯统计学方法、R语言混合效应(多水平/层次/嵌套)模型_inla包介绍-CSDN博客文章浏览阅读1.4k次,点赞18次,收藏23次。贝叶斯网络不但能够统合已有的各种统计学方法,如混合回归模型,LASSO,自回归模型,隐马模型等等;而且在很大程度上能够弥补统计学模型不能够进行因果推断的缺憾。以开源的R语言为平台,通过理论和实践相结合的方法,系统介绍了贝叶斯网络结构学习,参数学习以及因果推断等全过程,对贝叶斯网络有较全面的了解,并能够用于科研和工作实践中。_inla包介绍
https://blog.csdn.net/WangYan2022/article/details/135145016?spm=1001.2014.3001.5502★点 击 关 注,获取海量教程和资源
相关文章:
掌握数据相关性新利器:基于R、Python的Copula变量相关性分析及AI大模型应用探索
在工程、水文和金融等各学科的研究中,总是会遇到很多变量,研究这些相互纠缠的变量间的相关关系是各学科的研究的重点。虽然皮尔逊相关、秩相关等相关系数提供了变量间相关关系的粗略结果,但这些系数都存在着无法克服的困难。例如,…...
Centos7环境下安装MySQL8详细教程
1、下载mysql安装包 下载哪个版本,首先需要确定一下系统的glibc版本,使用如下命令: rpm -qa | grep glibc 2、检查是否安装过mysql ps:因为以前用yum安装过,所以先用yum卸载。如果不是此方式或者没安装过则跳过…...
趣学前端 | 综合一波CSS选择器的用法
背景 最近睡前习惯翻会书,重温了《HTML5与CSS 3权威指南》。这本书,分上下两册,之前读完了上册,下册基本没翻过。为了对得起花过的每一分钱,决定拾起来近期读一读。 CSS 选择器 在CSS3中,提倡使用选择器…...
数据库 06-04 恢复
01 一.事务故障 二.系统 三.磁盘 02. 重点是稳定存储器 组成...
基于MPPT的风力机发电系统simulink建模与仿真
目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1风能与风力发电机模型 4.2风力机功率特性与最大功率点 4.3 MPPT 5.完整工程文件 1.课题概述 基于MPPT的风力机发电系统simulink建模与仿真。MPPT使用S函数编写实现。基于最大功率点跟踪(…...
GD32F30x IO 复用问题
1.PE9 复用PWM 引脚 需要使能 gpio_pin_remap_config(GPIO_TIMER0_FULL_REMAP,ENABLE);...
BPMNJS 在原生HTML中的引入与使用
BPMNJS 在HTML中的引入与使用 在网上看到的大多是基于vue使用BPMN的示例或者教程,竟然没有在HTML使用的示例,有也是很简单的介绍核心库的引入和使用,并没有涉及到扩展库。于是简单看了下,真的是一波三折,坎坎坷坷。不…...
HarmonyOS 应用开发之通过数据管理服务实现数据共享静默访问
场景介绍 典型跨应用访问数据的用户场景下,数据提供方会存在多次被拉起的情况。 为了降低数据提供方拉起次数,提高访问速度,OpenHarmony提供了一种不拉起数据提供方直接访问数据库的方式,即静默数据访问。 静默数据访问通过数据…...
ubuntu强密码支持
接到新需求,欧盟需要ubuntu使用强密码,网络上找到一个包可以增加ubuntu密码增强机制,以下是调试过程。 sudo apt-get install libpam-pwquality 然后,编辑位于/etc/pam.d/目录中的common-password文件: sudo vim /et…...
C语言中文分词 Friso的使用教程
Friso是使用C语言开发的一款高性能中文分词器,使用流行的mmseg算法实现。完全基于模块化设计和实现,可以很方便的植入到其他程序中,例如:MySQL,PHP等。同时支持对UTF-8/GBK编码的切分。 官方地址:https://…...
MySQL中drop、truncate和delete的区别
✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏:每天一个知识点 ✨特色专栏:…...
Deep Image Prior
自监督的开创性工作 从简单分布到复杂分布的映射,本质上是将重建限制到某一流形,在流形上通过观测图像的数据保真项作为监督。 称之为先验也是很准确,流形就是先验。 这个扰动也很关键,本质上一个平滑正则项。直观理解是各种扰动…...
leetcode148. 排序链表
方法1:插入方法进行改进 class Solution {public ListNode sortList(ListNode head) {/*想法:设置两个指针first,last分别指向当前有序子链表的头和尾节点;并遍历链表,当遍历到的节点值大于last的值时,就将该节点插入到有序子链表…...
【深度学习环境配置】一文弄懂cuda,cudnn,NVIDIA Driver version,cudatoolkit的关系
【深度学习环境配置】一文弄懂cuda,cuDNN,NVIDIA Driver version,cudatoolkit的关系 NVIDIA Driver version(NVIDIA驱动程序)CUDAcuDNNcudatoolkit深度学习环境配置顺序 今天突然发现配置的环境有些问题,意…...
C语言中的字符与字符串:魔法般的函数探险
前言 在C语言的世界里,字符和字符串是两个不可或缺的元素,它们像是魔法般的存在,让文字与代码交织出无限可能。而在这个世界里,有一批特殊的函数,它们如同探险家,引领我们深入字符与字符串的秘境࿰…...
【JAVASE】带你了解面向对象三大特性之一(继承)
✅作者简介:大家好,我是橘橙黄又青,一个想要与大家共同进步的男人😉😉 🍎个人主页:再无B~U~G-CSDN博客 1.继承 1.1 为什么需要继承 Java 中使用类对现实世界中实体来…...
Git 如何去使用
目录 1. Git暂存区的使用 1.1. 暂存区的作用 1.2. 暂存区覆盖工作区(注意:完全确认覆盖时使用) 1.3. 暂存区移除文件 1.4. 练习 2. Git回退版本 2.1. 概念 2.2. 查看提交历史 2.3. 回退命令 2.4. 注意 3. Git删除文件 3.1. 需求 …...
C语言 | Leetcode C语言题解之第12题整数转罗马数字
题目: 题解: const char* thousands[] {"", "M", "MM", "MMM"}; const char* hundreds[] {"", "C", "CC", "CCC", "CD", "D", "DC"…...
【软件工程】测试规格
1. 引言 1.1简介 本次的测试用例是基于核心代码基本开发完毕,在第一代系统基本正常运行后编写的,主要目的是为了后续开发与维护的便利性。 该文档主要受众为该系统后续开发人员,并且在阅读此文档前最后先阅读本系统的需求文档、概要设计文…...
Nginx中间件服务:负载均衡(调度算法)
文章目录 引言I 原理1.1 后端服务器在负载均衡调度中的状态1.2 调度算法II upstreamd的应用2.1 加权负载均衡的服务器列表2.2 AB测试中使用upstream切分流量2.3 基于URL的HASH2.4 IP_HASHsee also引言 作用 转发功能:按照一定的调度算法(轮询、权重)将客户端发来的请求转发…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
