当前位置: 首页 > news >正文

LeetCode-1143. 最长公共子序列【字符串 动态规划】

LeetCode-1143. 最长公共子序列【字符串 动态规划】

  • 题目描述:
  • 解题思路一:动规五部曲
  • 解题思路二:1维DP
  • 解题思路三:0

题目描述:

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。
示例 2:

输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。
示例 3:

输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0 。

提示:

1 <= text1.length, text2.length <= 1000
text1 和 text2 仅由小写英文字符组成。

解题思路一:动规五部曲

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

有同学会问:为什么要定义长度为[0, i - 1]的字符串text1,定义为长度为[0, i]的字符串text1不香么?

这样定义是为了后面代码实现方便,如果非要定义为长度为[0, i]的字符串text1也可以,我在 动态规划:718. 最长重复子数组 (opens new window)中的「拓展」里 详细讲解了区别所在,其实就是简化了dp数组第一行和第一列的初始化逻辑。

  1. 确定递推公式
    主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

  1. dp数组如何初始化
    先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

  1. 确定遍历顺序
    从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:
    在这里插入图片描述那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。

  2. 举例推导dp数组
    以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:
    在这里插入图片描述
    最后红框dp[text1.size()][text2.size()]为最终结果

class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:# 创建一个二维数组 dp,用于存储最长公共子序列的长度dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]# 遍历 text1 和 text2,填充 dp 数组for i in range(1, len(text1) + 1):for j in range(1, len(text2) + 1):if text1[i - 1] == text2[j - 1]:# 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一dp[i][j] = dp[i - 1][j - 1] + 1else:# 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])# 返回最长公共子序列的长度return dp[len(text1)][len(text2)]# 同意
class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:m, n = len(text1), len(text2)dp = [[0] * (n+1) for _ in range(m+1)]for i in range(1, m+1):for j in range(1, n+1):if text1[i-1] != text2[j-1]:dp[i][j] = max(dp[i-1][j], dp[i][j-1])else:dp[i][j] = dp[i-1][j-1] + 1return dp[-1][-1]

时间复杂度:O(nm)
空间复杂度:O(nm)

解题思路二:1维DP

class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:m, n = len(text1), len(text2)dp = [0] * (n + 1)  # 初始化一维DP数组for i in range(1, m + 1):prev = 0  # 保存上一个位置的最长公共子序列长度for j in range(1, n + 1):curr = dp[j]  # 保存当前位置的最长公共子序列长度if text1[i - 1] == text2[j - 1]:# 如果当前字符相等,则最长公共子序列长度加一dp[j] = prev + 1else:# 如果当前字符不相等,则选择保留前一个位置的最长公共子序列长度中的较大值dp[j] = max(dp[j], dp[j - 1])prev = curr  # 更新上一个位置的最长公共子序列长度return dp[n]  # 返回最后一个位置的最长公共子序列长度作为结果

时间复杂度:O(nm)
空间复杂度:O(n)

解题思路三:0


时间复杂度:O(n)
空间复杂度:O(n)

相关文章:

LeetCode-1143. 最长公共子序列【字符串 动态规划】

LeetCode-1143. 最长公共子序列【字符串 动态规划】 题目描述&#xff1a;解题思路一&#xff1a;动规五部曲解题思路二&#xff1a;1维DP解题思路三&#xff1a;0 题目描述&#xff1a; 给定两个字符串 text1 和 text2&#xff0c;返回这两个字符串的最长 公共子序列 的长度。…...

从0开始创建单链表

前言 这次我来为大家讲解链表&#xff0c;首先我们来理解一下什么是单链表&#xff0c;我们可以将单链表想象成火车 每一节车厢装着货物和连接下一个车厢的链子&#xff0c;单链表也是如此&#xff0c;它是将一个又一个的数据封装到节点上&#xff0c;节点里不仅包含着数据&…...

STC89C52学习笔记(十)

STC89C52学习笔记&#xff08;十&#xff09; 综述&#xff1a;本文介绍了DS18B20和单总线协议&#xff0c;以及讲述了如何使用DS18B20测量温度。 一、单总线协议 1.只有一根通讯线&#xff1a;DQ &#xff08;常见的运用单总线的两种设备&#xff1a;DS18B20和DHT11&#…...

初识二叉树和二叉树的基本操作

目录 一、树 1.什么是树 2. 与树相关的概念 二、二叉树 1.什么是二叉树 2.二叉树特点 3.满二叉树与完全二叉树 4.二叉树性质 相关题目&#xff1a; 5.二叉树的存储 6.二叉树的遍历和基本操作 二叉树的遍历 二叉树的基本操作 一、树 1.什么是树 子树是不相交的;…...

如何开辟动态二维数组(C语言)

1. 开辟动态二维数组 C语言标准库中并没有可以直接开辟动态二维数组的函数&#xff0c;但我们可以通过动态一维数组来模拟动态二维数组。 二维数组其实可以看作是一个存着"DataType []"类型数据的一维数组&#xff0c;也就是存放着一维数组地址的一维数组。 所以&…...

【MATLAB第104期】基于MATLAB的xgboost的敏感性分析/特征值排序计算(针对多输入单输出回归预测模型)

【MATLAB第104期】基于MATLAB的xgboost的敏感性分析/特征值排序计算&#xff08;针对多输入单输出回归预测模型&#xff09; 因matlab的xgboost训练模型不含敏感性分析算法&#xff0c;本文通过使用single算法&#xff0c;即单特征因素对输出影响进行分析&#xff0c;得出不同…...

C语言程序与设计——工程项目开发

之前我们已经了解了C语言的基础知识部分&#xff0c;掌握这些之后&#xff0c;基本就可以开发一些小程序了。在开发时&#xff0c;就会出现合作的情况&#xff0c;C语言是如何协作开发的呢&#xff0c;将在这一篇文章进行演示。 工程项目开发 在开发过程中&#xff0c;你接到…...

【Java核心技术】第6章 接口

1 接口 接口不是类&#xff0c;而是对希望符合这个接口的类的一组需求 1.1 Comparable 接口 要对对象进行比较&#xff0c;就要实现(implement)比较(comparable)接口 注意&#xff1a; implements Comparable<Manager> Comparable接口是泛型接口 class Manager exten…...

【Java探索之旅】从输入输出到猜数字游戏

&#x1f3a5; 屿小夏 &#xff1a; 个人主页 &#x1f525;个人专栏 &#xff1a; Java编程秘籍 &#x1f304; 莫道桑榆晚&#xff0c;为霞尚满天&#xff01; 文章目录 &#x1f4d1;前言一、输入输出1.1 输出到控制台1.2 从键盘输入 二、猜数字游戏2.1 所需知识&#xff1a…...

【动态规划】【01背包】Leetcode 1049. 最后一块石头的重量 II

【动态规划】【01背包】Leetcode 1049. 最后一块石头的重量 II 解法 ---------------&#x1f388;&#x1f388;题目链接&#x1f388;&#x1f388;------------------- 解法 &#x1f612;: 我的代码实现> 动规五部曲 ✒️确定dp数组以及下标的含义 dp[j]表示容量为…...

2023 年上海市大学生程序设计竞赛 - 四月赛

A. 宝石划分 A. 宝石划分 - 2023 年上海市大学生程序设计竞赛 - 四月赛 - ECNU Online Judge 找距离N最近的M的因数q&#xff0c;输出M/q 如果是暴力所的话&#xff0c;会超时 #include <bits/stdc.h> using namespace std; int main(){ios::sync_with_stdio(false)…...

别让这6个UI设计雷区毁了你的APP!

一款成功的APP不仅仅取决于其功能性&#xff0c;更取决于用户体验&#xff0c;这其中&#xff0c;UI设计又至关重要。优秀的UI设计能够为用户带来直观、愉悦的交互体验&#xff0c;甚至让用户“一见钟情”&#xff0c;从而大大提高产品吸引力。 然而&#xff0c;有很多设计师在…...

继承【C/C++复习版】

目录 一、什么是继承&#xff1f;怎么定义继承&#xff1f; 二、继承关系和访问限定符&#xff1f; 三、基类和派生类对象可以赋值转换吗&#xff1f; 四、什么是隐藏&#xff1f;隐藏vs重载&#xff1f; 五、派生类的默认成员函数&#xff1f; 1&#xff09;派生类构造函…...

题目 2694: 蓝桥杯2022年第十三届决赛真题-最大数字【暴力解法】

最大数字 原题链接 &#x1f970;提交结果 思路 对于每一位&#xff0c;我我们都要尽力到达 9 所以我们去遍历每一位, 如果是 9 直接跳过这一位 如果可以上调到 9 我们将这一位上调到 9 &#xff0c;并且在a 中减去对应的次数 同样的&#xff0c;如果可以下调到 9&#xff0c;我…...

【C语言】- C语言字符串函数详解

C语言字符串函数详解 1、void *memset(void *dest, int c, size_t count); 将dest前面count个字符置为字符c. 返回dest的值. 2、void *memmove(void *dest, const void *src, size_t count); 从src复制count字节的字符到dest. 如果src和dest出现重叠, 函数会自动处理. 返回…...

如何实现小程序滑动删除组件+全选批量删除组件

如何实现小程序滑动删除组件全选批量删除组件 一、简介 如何实现小程序滑动删除组件全选批量删除组件 采用 uni-app 实现&#xff0c;可以适用微信小程序、其他各种小程序以及 APP、Web等多个平台 具体实现步骤如下&#xff1a; 下载开发者工具 HbuilderX进入 【Dcloud 插…...

基于SSM+Jsp+Mysql的农产品供销服务系统

开发语言&#xff1a;Java框架&#xff1a;ssm技术&#xff1a;JSPJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包…...

​​​​网络编程学习探索系列之——广播原理剖析

hello &#xff01;大家好呀&#xff01; 欢迎大家来到我的网络编程系列之广播原理剖析&#xff0c;在这篇文章中&#xff0c; 你将会学习到如何在网络编程中利用广播来与局域网内加入某个特定广播组的主机&#xff01; 希望这篇文章能对你有所帮助&#xff0c;大家要是觉得我写…...

小程序开发SSL证书下载和安装

在开发小程序时&#xff0c;确保数据的安全传输至关重要&#xff0c;而实现这一目标的关键在于正确获取与安装SSL证书。以下详细介绍了从获取到安装SSL证书的完整流程&#xff0c;以助您为小程序构建可靠的加密通信环境。 一、小程序SSL证书类型选择&#xff1a; 域名验证型D…...

医疗图像分割 | 基于Pyramid-Vision-Transformer算法实现医疗息肉分割

项目应用场景 面向医疗图像息肉分割场景&#xff0c;项目采用 Pytorch Pyramid-Vision-Transformer 深度学习算法来实现。 项目效果 项目细节 > 具体参见项目 README.md (1) 模型架构 (2) 项目依赖&#xff0c;包括 python 3.8、pytorch 1.7.1、torchvision 0.8.2(3) 下载…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践

01技术背景与业务挑战 某短视频点播企业深耕国内用户市场&#xff0c;但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大&#xff0c;传统架构已较难满足当前企业发展的需求&#xff0c;企业面临着三重挑战&#xff1a; ① 业务&#xff1a;国内用户访问海外服…...