当前位置: 首页 > news >正文

如何将Paddle(Lite)模型转换为TensorFlow(Lite)模型

模型间的相互转换在深度学习应用中很常见,paddlelite和TensorFlowLite是移动端常用的推理框架,有时候需要将模型在两者之间做转换,本文将对转换方法做说明。

环境准备

建议使用TensorFlow2.14,PaddlePaddle 2.6

docker pull tensorflow/tensorflow:2.14.0

Step1:From Paddle to ONNX

直接参考https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/docs/zh/compile.md 源码编译Paddle2ONNX
然后执行

paddle2onnx --model_dir . --model_filename your.pdmodel --params_filename your.pdiparams --save_file model.onnx   
会看到输出                           
[Paddle2ONNX] Start to parse PaddlePaddle model...
[Paddle2ONNX] Model file path: ./pdmodel.pdmodel
[Paddle2ONNX] Parameters file path: ./pdmodel.pdiparams
[Paddle2ONNX] Start to parsing Paddle model...
[Paddle2ONNX] [bilinear_interp_v2: bilinear_interp_v2_1.tmp_0] Requires the minimal opset version of 11.
[Paddle2ONNX] [pixel_shuffle: pixel_shuffle_1.tmp_0] Requires the minimal opset version of 11.
[Paddle2ONNX] [pixel_shuffle: pixel_shuffle_2.tmp_0] Requires the minimal opset version of 11.
[Paddle2ONNX] Due to the operator: bilinear_interp_v2, requires opset_version >= 11.
[Paddle2ONNX] Opset version will change to 11 from 9
[Paddle2ONNX] Use opset_version = 11 for ONNX export.
[Paddle2ONNX] PaddlePaddle model is exported as ONNX format now.
2024-04-09 11:55:50 [INFO]	===============Make PaddlePaddle Better!================
2024-04-09 11:55:50 [INFO]	A little survey: https://iwenjuan.baidu.com/?code=r8hu2s

关于pdparams和pdiparams两种参数文件的区别,参考https://www.paddlepaddle.org.cn/documentation/docs/zh/faq/save_cn.html中的描述

Step2:From ONNX to TensorFlow

使用https://github.com/onnx/onnx-tensorflow

pip install tensorflow-addons
pip install tensorflow-probability==0.22.1 
pip install onnx-tf

接下来

onnx-tf convert -i model.onnx -o model.pb

会看到输出

2024-04-09 07:03:32,346 - onnx-tf - INFO - Start converting onnx pb to tf saved model
2024-04-09 07:03:41,015 - onnx-tf - INFO - Converting completes successfully.
INFO:onnx-tf:Converting completes successfully.

在model.pb目录下可以看到saved_model.pb

Step3:From TensorFlow to tflite

参考https://www.tensorflow.org/lite/convert?hl=zh-cn 编写python脚本

import tensorflow as tf
# Convert the model
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) # path to the SavedModel directory
tflite_model = converter.convert()# Save the model.
with open('model.tflite', 'wb') as f:f.write(tflite_model)

运行python脚本,会看到输出

2024-04-09 07:16:45.514656: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:378] Ignored output_format.
2024-04-09 07:16:45.514767: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:381] Ignored drop_control_dependency.
2024-04-09 07:16:45.515630: I tensorflow/cc/saved_model/reader.cc:83] Reading SavedModel from: .
2024-04-09 07:16:45.517291: I tensorflow/cc/saved_model/reader.cc:51] Reading meta graph with tags { serve }
2024-04-09 07:16:45.517352: I tensorflow/cc/saved_model/reader.cc:146] Reading SavedModel debug info (if present) from: .
2024-04-09 07:16:45.523781: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:382] MLIR V1 optimization pass is not enabled
2024-04-09 07:16:45.524480: I tensorflow/cc/saved_model/loader.cc:233] Restoring SavedModel bundle.
2024-04-09 07:16:45.543346: I tensorflow/cc/saved_model/loader.cc:217] Running initialization op on SavedModel bundle at path: .
2024-04-09 07:16:45.559402: I tensorflow/cc/saved_model/loader.cc:316] SavedModel load for tags { serve }; Status: success: OK. Took 43775 microseconds.
2024-04-09 07:16:45.584171: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.
2024-04-09 07:16:45.635201: I tensorflow/compiler/mlir/lite/flatbuffer_export.cc:2245] Estimated count of arithmetic op

到此大功告成!

相关文章:

如何将Paddle(Lite)模型转换为TensorFlow(Lite)模型

模型间的相互转换在深度学习应用中很常见,paddlelite和TensorFlowLite是移动端常用的推理框架,有时候需要将模型在两者之间做转换,本文将对转换方法做说明。 环境准备 建议使用TensorFlow2.14,PaddlePaddle 2.6 docker pull te…...

最新Zibll子比主题V7.1版本源码 全新推出开心版

源码下载地址:Zibll子比主题V7.1.zip...

响应式布局(其次)

响应式布局 一.响应式开发二.bootstrap前端开发框架1.原理2.优点3.版本问题4.使用(1)创建文件夹结构(2)创建html骨架结构(3)引入相关样式(4)书写内容 5.布局容器(已经划分…...

arhtas idea plugin 使用手册

arthas idea plugin 使用文档 语雀...

数组算法——查询位置

需求 思路 使用二分查找找到第一个值,以第一个值作为界限,分为左右两个区间在左右两个区间分别使用二分查找找左边的7,:找到中间位置的7之后,将中间位置的7作为结束位置,依次循环查找,知道start>end,返回…...

【解决leecode打不开的问题】使用chrome浏览器和其他浏览器均打不开leecode

问题描述: 能进入leetcode力扣官网但是对某些栏目加载不出来,比如学习栏目能完成加载、题库栏目不能加载。 解决方法一:cookies缓存问题 首先尝试删除浏览器cookie缓存。 因为以下原因: Cookies损坏或过期:有些网站…...

尝试在手机上运行google 最新开源的gpt模型 gemma

Gemma介绍 Gemma简介 Gemma是谷歌于2024年2月21日发布的一系列轻量级、最先进的开放语言模型,使用了与创建Gemini模型相同的研究和技术。由Google DeepMind和Google其他团队共同开发。 Gemma提供两种尺寸的模型权重:2B和7B。每种尺寸都带有经过预训练&a…...

56、巴利亚多利德大学、马德里卡洛斯三世研究所:EEG-Inception-多时间尺度与空间卷积巧妙交叉堆叠,终达SOTA!

本次讲解一下于2020年发表在IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING上的专门处理EEG信号的EEG-Inception模型,该模型与EEGNet、EEG-ITNet、EEGNex、EEGFBCNet等模型均是专门处理EEG的SOTA。 我看到有很多同学刚入门,不太会…...

ORA-00600: internal error code, arguments: [krbcbp_9]

解决方案 1、清理过期 2、control_file_record_keep_time 修改 恢复时间窗口 RMAN (Recovery Manager) 是 Oracle 数据库的备份和恢复工具。在 RMAN 中,可以使用“恢复窗口”的概念来指定数据库可以恢复到的时间点。这个时间点是基于最近的完整备份或增量备份。 …...

uni-app实现分页--(2)分页加载,首页下拉触底加载更多

业务逻辑如下: api函数升级 定义分页参数类型 组件调用api传参...

前端工程化理解 (2024 面试题)

最好介绍远古世界最好随性一点,不要太刻板 ,不然像背书 什么是前端工程化? - 知乎 前端工程化的历史 互联网初期,09 年以前,页面只需要展示一些列表、表格、文章内容以及简单图片即可,其目的是为了传送信…...

10 Php学习:循环

在 PHP 中,提供了下列循环语句: while - 只要指定的条件成立,则循环执行代码块do…while - 首先执行一次代码块,然后在指定的条件成立时重复这个循环for - 循环执行代码块指定的次数foreach - 根据数组中每个元素来循环代码块 当…...

FreeSWITCH 1.10.10 简单图形化界面17 - ubuntu22.04或者debian12 安装FreeSWITCH

FreeSWITCH 1.10.10 简单图形化界面17 - ubuntu22.04或者debian12 安装FreeSWITCH 界面预览00、先看使用手册0、安装操作系统1、下载脚本2、开始安装3、登录网页FreeSWITCH界面安装参考:https://blog.csdn.net/jia198810/article/details/132479324 界面预览 http://myfs.f3…...

ZStack Cloud 5.0.0正式发布——Vhost主存储、隔离PVLAN网络、云平台报警优化、灰度升级增强四大亮点简析

近日,ZStack Cloud 5.0.0正式发布,推出了包含Vhost主存储、隔离PVLAN网络、云平台报警优化、灰度升级增强在内的一系列重要功能。云主机管理、物理机运维、密评合规、灾备服务等诸多使用场景和功能模块均有更新,为您带来更完善的平台服务、更…...

商标没有去注册有哪些不好的影响!

有些商家咨询普推知产老杨,商标没有去注册有哪些不好的影响,其实对企业来说还有许多实际不利的影响,有时代价比注册一个商标要大很多。 想的商标名称没去注册商标,如果别人抢注拿下商标注册证,那就会涉及侵权&#xf…...

【小程序】常用方法、知识点汇总1

欢迎来到《小5讲堂》 这是《小程序》系列文章,每篇文章将以博主理解的角度展开讲解, 温馨提示:博主能力有限,理解水平有限,若有不对之处望指正! 目录 前言请求超时Markdown解析逐行显示效果文本变动事件转发…...

AugmentedReality之路-平面检测(5)

本文介绍通过AR检测水平平面和垂直平面,并将检测到的平面转化为Mesh 1、在首页添加功能入口 在首页添加一个按钮,命名为Start World Track 2、自定义ExecStartAREvent 创建ARSessionConfig并取名为ARSessionConfig_World 自定义ExecStartAREvent&…...

MQ:延迟队列

6.1场景: 1.定时发布文章 2.秒杀之后,给30分钟时间进行支付,如果30分钟后,没有支付,订单取消。 3.预约餐厅,提前半个小时发短信通知用户。 A -> 13:00 17:00 16:30 延迟时间: 7*30 * 60 *…...

Element ui 动态展示表格列,动态格式化表格列的值

需求 后台配置前端展示的表格列,遇到比如 文件大小这样的值,如果后台存的是纯数字,需要进行格式化展示,并且能控制显示的小数位数,再比如,部分列值需要加单位等信息,此外还有状态类&#xff0…...

xxl-job调度任务原理解析

xxljob可以对定时任务进行调度,现在看下定时任务调度的过程。XxlJobAdminConfig实现了InitializingBean接口,spring会调用afterPropertiesSet()进行初始化。大致有以下几个过程: admin服务端初始化 JobTriggerPoolHelper.java#toStart()方法…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

三体问题详解

从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...