状态模式:管理对象状态转换的动态策略
在软件开发中,状态模式是一种行为型设计模式,它允许一个对象在其内部状态改变时改变它的行为。这种模式把与特定状态相关的行为局部化,并且将不同状态的行为分散到对应的状态类中,使得状态和行为可以独立变化。本文将详细介绍状态模式的定义、实现、应用场景以及优缺点。

1. 状态模式的定义
状态模式(State Pattern)使得一个对象能够在其内部状态改变时,改变其行为。这看起来像是该对象改变了它的类。状态模式主要涉及两个概念:上下文(Context)和状态(State)。上下文是用户主要交互的对象,持有一个指向当前状态对象的引用,该引用可以根据情况被替换成不同状态的对象。
2. 实现状态模式
在Python中,实现状态模式通常涉及创建一个状态接口和多个具体状态类。以下是状态模式的一个简单实现示例:
from abc import ABC, abstractmethodclass State(ABC):"""状态抽象基类"""@abstractmethoddef handle(self, context):passclass ConcreteStateA(State):"""具体状态A"""def handle(self, context):print("Turning from State A to State B")context.state = ConcreteStateB()class ConcreteStateB(State):"""具体状态B"""def handle(self, context):print("Turning from State B to State A")context.state = ConcreteStateA()class Context:"""上下文类,维持一个指向当前状态对象的引用"""def __init__(self, state):self._state = state@propertydef state(self):return self._state@state.setterdef state(self, value):self._state = valuedef request(self):self._state.handle(self)# 客户端代码
context = Context(ConcreteStateA())
context.request() # 输出: Turning from State A to State B
context.request() # 输出: Turning from State B to State A
3. 状态模式的应用实例
状态模式在多种场景中非常有用,尤其适用于:
- 工作流管理:如工作流或游戏中的状态管理。
- UI控件状态:不同状态下UI控件的行为。
- 门的状态:如一个自动门可以有打开、关闭和锁定状态。
4. 优点和缺点
优点:
- 封装了转换规则。
- 枚举可能的状态,在编译时间内发现不兼容的状态转换。
- 将所有与某个状态相关的行为都放入一个对象中。
缺点:
- 如果状态多且复杂,会导致状态类的增多,系统变得复杂。
5. 总结
状态模式是处理对象在不同状态转换时行为的有效方式,它提供了一种清晰的方式来组织涉及状态的代码,适合处理复杂的状态逻辑问题。
更多Python编程相关文章:cpython666.github.io
相关文章:
状态模式:管理对象状态转换的动态策略
在软件开发中,状态模式是一种行为型设计模式,它允许一个对象在其内部状态改变时改变它的行为。这种模式把与特定状态相关的行为局部化,并且将不同状态的行为分散到对应的状态类中,使得状态和行为可以独立变化。本文将详细介绍状态…...
【论文阅读】MCTformer: 弱监督语义分割的多类令牌转换器
【论文阅读】MCTformer: 弱监督语义分割的多类令牌转换器 文章目录 【论文阅读】MCTformer: 弱监督语义分割的多类令牌转换器一、介绍二、联系工作三、方法四、实验结果 Multi-class Token Transformer for Weakly Supervised Semantic Segmentation 本文提出了一种新的基于变换…...
FMix: Enhancing Mixed Sample Data Augmentation 论文阅读
1 Abstract 近年来,混合样本数据增强(Mixed Sample Data Augmentation,MSDA)受到了越来越多的关注,出现了许多成功的变体,例如MixUp和CutMix。通过研究VAE在原始数据和增强数据上学习到的函数之间的互信息…...
2024蓝桥A组A题
艺术与篮球(蓝桥) 问题描述格式输入格式输出评测用例规模与约定解析参考程序难度等级 问题描述 格式输入 无 格式输出 一个整数 评测用例规模与约定 无 解析 模拟就好从20000101-20240413每一天计算笔画数是否大于50然后天数; 记得判断平…...
Linux journalctl命令详解
文章目录 1.介紹2.概念设置system time基本的日志查阅方法按时过滤日志(by Time)显示本次启动以来的日志(Current Boot)按Past Boots按时间窗口按感兴趣的消息筛选按unit按进程、用户、Group ID按组件路径显示内核消息按消息优先级…...
恢复MySQL!是我的条件反射,PXB开源的力量...
📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜&am…...
Storm详细配置
一、认识Storm Apache Storm是个实时数据处理的“大能”,它可以实时接收、处理并转发大量数据流,就像一个高速运转的物流中心,确保数据及时、准确地到达目的地。我们要做的,就是把这个物流中心搭建起来,并且根据我们的…...
linux redis部署教程
单节点部署: 单节点部署 Redis 非常简单,只需要在一台服务器上安装 Redis 服务即可。以下是在 Linux 环境下的单节点部署步骤: 安装 Redis:打开终端,并执行以下命令来更新软件包列表并安装 Redis 服务器:…...
【Java】隐式锁(synchronized):如何解决餐厅等座的并发难题
当你走进一家熙熙攘攘的餐厅,准备享受一顿美味的晚餐时,你是否曾想过,这里正上演着一场场微观的线程战争?在这个场景中,每一张桌子都代表着珍贵的共享资源,而每一位顾客(线程)都在争…...
科技论文和会议录制高质量Presentation Video视频方法
一、背景 机器人领域,许多高质量的期刊和会议(如IEEE旗下的TRO,RAL,IROS,ICRA等)在你的论文收录后,需要上传一个Presentation Video材料,且对设备兼容性和视频质量有较高要求&#…...
Spring高手之路17——动态代理的艺术与实践
文章目录 1. 背景2. JDK动态代理2.1 定义和演示2.2 不同方法分别代理2.3 熔断限流和日志监控 3. CGLIB动态代理3.1 定义和演示3.2 不同方法分别代理(对比JDK动态代理写法)3.3 熔断限流和日志监控(对比JDK动态代理写法) 4. 动态代理…...
如何在Unity中使用设计模式
在 Unity 环境中,设计模式是游戏开发人员遇到的常见问题的通用解决方案。将它们视为解决游戏开发中特定挑战的经过验证的模板或蓝图。以下是一些简单易懂的设计模式: 1. 单例=> 单例模式确保一个类只有一个实例,并提供对该实例的全局访问点。在 Unity 中,可以使用单例模…...
基于springboot+vue+Mysql的旅游管理系统
开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…...
vue3+ts中判断输入的值是不是经纬度格式
vue3ts中判断输入的值是不是经纬度格式 vue代码: <template #bdjhwz"{ record }"><a-row :gutter"8" v-show"!record.editable"><a-col :span"12"><a-input placeholder"经度" v-model:v…...
python常用知识总结
文章目录 1. 常用内置函数1. ASCII码与字符相互转换 1. 常用内置函数 1. ASCII码与字符相互转换 # 用户输入字符 c input("请输入一个字符: ")# 用户输入ASCII码,并将输入的数字转为整型 a int(input("请输入一个ASCII码: "))print( c &qu…...
常用的启发式算法
A算法:在电子地图导航软件中,当你输入目的地时,软件就会利用A算法来计算从现在的位置到目的地的最佳路径。该算法兼顾了路径的优化以及计算速度,保证了结果的准确性以及反馈的实时性。 模拟退火算法:模拟退火算法常被…...
应该如何进行POC测试?—【DBA从入门到实践】第三期
在数据库选型过程中,为确保能够灵活应对数据规模的不断扩大和处理需求的日益复杂化,企业和技术人员会借助POC测试来评估不同数据库系统的性能。在测试过程中,性能、并发处理能力、存储成本以及高可用性等核心要素通常会成为大家关注的焦点&am…...
通过Clojure中的集合与序列谈谈抽象的重要
与君共勉:生命不息,学习不止,切忌浮躁,静下心来,每天进步一点点。 Clojure简介 Clojure是一门运行在JVM上面的Lisp方言,其它的Lisp方言还有Scheme、Common Lisp等。Lisp相关的著名书籍有《计算机程序的构…...
Rust---模式(Pattern)匹配
目录 模式是什么它用来做什么模式匹配和赋值为什么会有模式匹配模式匹配用在什么地方match 表达式if let表达式while let表达式for 循环let 语句函数参数不可驳模式匹配和可驳模式匹配模式是什么 在Rust中,模式(Pattern)是一种用于匹配和解构数据的语法结构。模式匹配中常用…...
MATLAB 计算点投影到平面上的坐标(59)
MATLAB 计算点投影到平面上的坐标(59) 一、算法介绍二、算法实现1.代码2.结果一、算法介绍 点投影到平面,计算投影点的坐标,下面提供MATLAB版本的计算程序,直接运行即可,内有验证数据,具体看代码即可。 二、算法实现 1.代码 代码如下(示例): % 平面上的三个点分…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解
文章目录 一、开启慢查询日志,定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...
【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)
旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...
医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...
