当前位置: 首页 > news >正文

知识图谱与人工智能:携手共进

知识图谱与人工智能:携手共进

在这里插入图片描述

一、引言:知识图谱与人工智能的融合

在这个数据驱动的时代,知识图谱与人工智能(AI)之间的融合不仅是技术发展的必然趋势,也是推动各行各业创新的关键。知识图谱,作为一种将知识以图形方式组织起来的方法,提供了一种结构化的知识表示,让机器能够理解、推理并应用人类的知识。而人工智能,则利用这些结构化的知识来增强其决策、学习和预测的能力。当这两者结合时,它们能够互相促进,共同进步,为解决复杂的现实问题提供了新的视角和方法。

本文的目标在于探讨知识图谱与人工智能如何携手共进,互相促进对方的发展,并在实际应用中发挥出巨大的价值。我们将首先简述知识图谱与人工智能结合的背景和重要性,随后深入探讨知识图谱如何为人工智能提供价值,以及人工智能技术如何推动知识图谱的进一步发展。此外,我们还将讨论知识图谱在AI应用中的关键角色,并通过案例研究来具体展示其应用实例。最终,我们会讨论在这一领域面临的挑战和未来的发展趋势。

接下来,让我们深入第一节,探讨知识图谱与人工智能结合的背景和重要性,以及本文的结构和目标。

在过去的十年中,随着大数据技术的发展和机器学习算法的进步,人工智能技术已经取得了飞速的发展。然而,AI的进步并非仅仅依赖于算法的改进,数据的质量和组织方式同样起到了决定性的作用。这就是知识图谱发挥其价值的地方。以Google的知识图谱为例,它通过整合网络上的信息,构建出一个庞大的、可查询的知识库,极大地提高了搜索引擎的准确性和效率。此外,知识图谱的应用也不仅限于提高搜索质量,它还能为推荐系统、智能问答、语义搜索等多个领域提供支持,显示出其广泛的应用潜力。

总之,知识图谱与人工智能的结合,不仅能提高AI技术本身的理解能力和决策质量,还能为实际应用带来更加个性化、智能化的服务。通过本文的讨论,我们将更深入地理解这一融合带来的价值和挑战,以及未来可能的发展方向。

在这里插入图片描述

二、知识图谱对人工智能的价值

在当今信息爆炸的数字时代,人工智能(AI)正迅速成为解析和处理大量数据的强大工具。然而,AI系统往往需要大量结构化的数据来学习和做出决策。这正是知识图谱发挥其独特价值的地方。

知识图谱是一种结构化的知识表示方式,它将事物(实体)及其相互之间的关系以图的形式表达出来。这些实体和关系通常是从各种数据源中抽取出来,并且以一种方式组织,使得机器能够理解和处理。通过将现实世界的对象、概念以及它们之间的多维关系映射为图中的节点和边,知识图谱为AI提供了一个丰富的语义框架,使AI能够对其进行查询、推理和解读。

举个具体的例子,假设我们正在开发一个AI助理,需要理解和处理关于医疗健康的查询。在这种情况下,一个全面的医疗知识图谱将包括疾病、症状、治疗方法、药物以及医生和医院等实体,并且详细描述它们之间的关系。例如,该图谱会指出哪些症状通常与特定的疾病相关,哪些药物可以用于治疗该疾病,哪些副作用可能与特定药物相关等等。这样的结构化知识不仅能提高AI助理的问答能力,还能辅助其在提供医疗建议时做出更精确的决策。

此外,知识图谱在提升AI的解释能力方面也发挥着不可替代的作用。以推荐系统为例,传统的算法可能仅基于用户的历史行为数据进行推荐,而无法提供推荐的深层次原因。然而,如果结合知识图谱,系统不仅可以推荐内容,还可以解释为何推荐这些内容,例如因为它们与用户过往喜欢的项相关,或者因为它们在图谱中与用户的兴趣点连结紧密。这种透明的推荐过程显著提高了用户的信任和满意度。

总结来说,知识图谱为人工智能系统提供了一种理解复杂世界和做出智能决策的框架。它们的集成使得AI不仅能够处理大规模的非结构化数据,而且也促进了对这些数据的深入理解,从而综合出更加智能和个性化的解决方案。随着知识图谱在精度和深度上的不断完善,我们可以预见它们将在提升AI的能力方面发挥更加关键的作用。

在这里插入图片描述

三、人工智能技术推动知识图谱的发展

在探讨知识图谱的构建与维护过程中,人工智能(AI)技术扮演了不可或缺的角色。特别是机器学习(ML)和自然语言处理(NLP)等技术,它们为知识图谱的自动化构建、优化、以及知识抽取与融合提供了强大的动力。

机器学习和自然语言处理在构建和优化知识图谱中的作用

机器学习,尤其是深度学习技术,在解析大规模数据集,识别模式和关系方面展现出了卓越的能力。通过训练复杂的算法模型,机器学习可以自动识别实体(例如,人物、地点、组织)和它们之间的关系,这是构建知识图谱的基础。

自然语言处理技术,特别是文本挖掘和语义分析,能够理解和解释人类语言中的含义,这对于从非结构化数据中自动提取知识至关重要。NLP技术能够识别文本中的关键信息,如命名实体识别(NER)、关系提取(RE)、事件抽取等,并将这些信息结构化为知识图谱可以接受的格式。

AI技术在自动化知识抽取、融合和更新方面的应用

在知识图谱的自动化构建过程中,AI技术不仅能够识别和抽取关键信息,而且能够评估信息的相关性和准确性,从而实现知识的自动融合和更新。例如,通过机器学习模型预测实体之间的潜在关系,或者使用NLP技术自动从最新的文献和网络资源中抽取更新信息。

举例说明:

以医疗领域的知识图谱为例,我们可以利用NLP技术从医学论文、临床报告和在线医疗数据库中自动抽取信息。通过训练专门的深度学习模型,可以识别出疾病、症状、药物和治疗方法之间的复杂关系,并将这些信息以图谱的形式表示。这样,医生和研究人员就可以通过查询知识图谱,快速地获取到最新的医疗信息和研究成果。

此外,随着时间的推移,新的研究成果和医疗实践不断涌现,知识图谱需要不断更新以反映最新的知识状态。在这个过程中,AI技术可以自动监测新信息,评估其与现有知识的相关性和准确性,并及时更新知识图谱,确保其时刻保持最新状态。

通过上述描述,我们可以看到,AI技术不仅为知识图谱的构建和维护提供了有效的工具,而且通过自动化的方式极大地提高了效率和准确性。未来,随着AI技术的不断进步,我们有理由相信,知识图谱的构建和应用将会更加智能化和高效。

在这里插入图片描述

四、知识图谱在AI应用中的角色

知识图谱,在人工智能领域,不仅是信息的海量仓库,更是智能应用实现复杂决策和深度学习的基石。它通过结构化的方式组织知识,为AI应用提供了一种理解世界的方式。本节将深入探讨知识图谱如何在推荐系统、智能搜索、问答系统等关键AI应用中扮演着不可或缺的角色,并通过实例分析,揭示知识图谱如何在实践中实现这些应用。

1. 推荐系统

在推荐系统中,知识图谱的作用体现在它如何帮助系统更好地理解用户偏好、物品属性及它们之间的复杂关系。例如,一个电影推荐系统可以通过知识图谱来理解电影之间的关联(如导演、演员、题材等),同时结合用户历史观影记录和偏好,为用户推荐新的电影。这种方式不仅基于用户的直接互动,还能理解电影的深层属性,从而提供更为精准的推荐。

举一个具体的例子,假设用户A喜欢由某位导演执导的科幻电影,知识图谱能够识别出该导演的其他作品以及与之风格相近的科幻电影,即使用户之前未曾接触过。这种推荐策略相较于基于用户行为的推荐,能够提供更加多样化和深度个性化的内容。

2. 智能搜索

在智能搜索应用中,知识图谱通过提供一种丰富的语义搜索框架来增强搜索结果的相关性和准确性。它能够理解用户的查询意图,并通过关联查询和知识图谱中的实体及其属性,返回更加丰富和精确的搜索结果。

例如,当用户查询“奥斯卡获奖电影”时,传统的基于关键词的搜索方法可能只返回包含这些关键词的文本结果。而利用知识图谱,搜索系统可以识别“奥斯卡获奖”是一个奖项,进而返回所有获此奖项的电影列表,甚至可以根据用户的历史搜索行为和偏好,进一步定制化搜索结果。

3. 问答系统

问答系统是知识图谱应用的另一重要领域。通过对自然语言查询的理解和处理,结合知识图谱中的事实和关系,问答系统能够提供精确的答案。这一过程涉及到复杂的语义理解和逻辑推理,而知识图谱正是提供这些能力的关键组件。

以“欧洲最长的河流是什么?”为例,问答系统首先需要理解查询中的关键实体(“欧洲”、“河流”)和查询意图(寻找“最长”的那个)。接下来,系统通过知识图谱中的地理信息,找到所有位于欧洲的河流,然后根据长度属性进行比较,最终返回正确答案“伏尔加河”。

通过以上例子,我们可以看到知识图谱在各个AI应用中扮演的关键角色。它不仅提供了结构化的知识,还使得AI系统能够以更加智能的方式理解和处理信息,从而提升了整体的应用性能和用户体验。

在这里插入图片描述

五、 面临的挑战与解决方案

在探索知识图谱与人工智能的融合过程中,虽然我们已经取得了显著的进展,但这一领域依然面临着多项挑战。这些挑战不仅影响了知识图谱的构建和应用,也限制了人工智能系统的发展。在本节中,我们将深入讨论这些挑战,并提出相应的解决方案。

数据质量问题

数据质量是构建高效知识图谱的关键。不幸的是,由于数据来源的多样性,错误的信息、不一致性和缺乏标准化经常出现,这些问题直接影响到知识图谱的准确性和可靠性。

  • 解决方案:采用先进的数据清洗技术和信息抽取算法来提高数据质量。同时,建立严格的数据标准和验证流程,确保只有经过验证的数据才能被纳入知识图谱。

知识更新问题

随着时间的推移,知识会发生变化。然而,手动更新知识图谱既费时又费力,这限制了知识图谱的时效性和应用价值。

  • 解决方案:利用机器学习算法,特别是增量学习技术,自动检测新知识并更新知识图谱。此外,建立社区贡献机制,鼓励专家和用户参与知识的更新和验证过程。

语义理解问题

尽管知识图谱为人工智能提供了大量的结构化知识,但AI系统在理解复杂语义和上下文方面仍然存在挑战。

  • 解决方案:发展和应用更先进的自然语言处理技术,特别是那些能够理解语义和上下文的算法,如Transformer模型和BERT等。这将有助于AI系统更准确地解释知识图谱中的信息。

例子:自动新闻摘要生成

让我们以自动新闻摘要生成为例来具体说明以上挑战和解决方案的应用。新闻摘要生成依赖于高质量的数据源,因此,通过自动数据清洗和实时数据验证程序,可以确保输入到知识图谱的新闻数据既准确又可靠。接下来,利用增量学习技术,新闻知识图谱能够不断更新,反映最新的事件和信息。最后,通过利用最新的NLP技术,如GPT和BERT,AI系统能够更好地理解文章的深层含义和语境,生成更加准确和自然的新闻摘要。

总结来说,尽管在知识图谱和人工智能的整合过程中存在诸多挑战,但通过采用创新的技术和方法,我们有望解决这些问题,推动两者的融合向更深层次、更高效率的方向发展。

在这里插入图片描述

六、未来趋势:智能化的知识图谱

在探索知识图谱与人工智能的未来趋势时,我们的视野转向了更加智能化的知识图谱。这些知识图谱不仅仅是静态的信息存储库,而是动态的、能够自我更新和自我完善的系统。它们具备了更深层次的语义理解能力,可以与人工智能技术无缝集成,以提供更加精准和丰富的决策支持。接下来,我们将深入探讨这些趋势,并通过具体的实例来更好地理解它们将如何塑造未来。

自动化知识发现

自动化知识发现是智能化知识图谱的一个关键特性。传统知识图谱依赖于专家手动构建和更新,这个过程耗时且易出错。而智能化的知识图谱通过集成先进的自然语言处理(NLP)技术和机器学习(ML)算法,能够自动地从文本、图像、视频等非结构化数据中提取知识实体和关系。

例如,考虑一个自动更新的医疗知识图谱。它利用深度学习模型从最新的医学研究中提取信息,自动识别新的药物名称、疾病标识和治疗方法,并将这些数据点整合进图谱中。这不仅加速了知识的更新速度,还减少了人为错误,使医疗专业人员能够获取最新的信息,改进诊断和治疗方案。

动态更新

与自动化知识发现紧密相关的是动态更新能力。智能化的知识图谱能够监测数据源中的变化,并实时反映这些变化。这意味着知识图谱能够与时俱进,适应快速变化的信息环境。

以金融领域为例,一个动态更新的知识图谱可以实时跟踪和分析市场动态、公司新闻、股价变动等信息。当有大规模的市场波动时,该知识图谱自动调整自身的数据,从而为金融分析师提供即时的、深入的洞察。

更深层次的语义理解

最后,智能化知识图谱的一个最重要的发展趋势是其深层次的语义理解能力。通过集成复杂的语义分析技术,知识图谱不仅能理解实体和实体之间的关系,还能捕捉上下文含义、隐含信息和抽象概念。

举一个简单的例子,假设我们有一个智能化的法律知识图谱,它不仅能够识别不同法律文件中的术语和它们的相互关系,还能理解不同法律判例之间的细微差别与联系。这样的系统可能会利用最先进的NLP技术,如BERT、GPT等,来理解、推理并提供对法律问题深刻的见解。

总之,未来的知识图谱将不再是单一的数据集,而是成为了具有高度智能化、动态性和语义理解能力的系统。它们能够更加准确地服务于AI应用,并为我们提供更丰富、更高效的知识服务。随着技术的不断进步,我们有理由相信,知识图谱将在人工智能领域扮演越来越重要的角色。

在这里插入图片描述

七、案例研究:成功的知识图谱与AI集成项目

在探讨知识图谱与人工智能的融合过程中,了解实际案例无疑能提供更加具体和深入的见解。本节将详细介绍两个成功的案例研究,通过这些案例,我们可以清楚地看到知识图谱如何与AI技术结合,提高了项目的成功率和效率。

案例一:智能推荐系统

在电子商务领域,某知名电商平台开发了一套基于知识图谱的智能推荐系统。该系统首先利用自然语言处理技术从大量的用户评价和产品描述中抽取关键信息,构建起一个丰富的产品知识图谱。接着,通过机器学习算法分析用户的购物行为和偏好,将这些数据与知识图谱中的信息相结合,实现了个性化的商品推荐。

具体来说,该系统能够理解用户对某一类产品的兴趣程度,并根据产品之间的关联性,推荐那些与用户已购商品相似或补充的商品。例如,一位用户购买了一本关于机器学习的书籍,系统便可能推荐其他高评价的人工智能领域书籍,或者是机器学习相关的工具和课程。这种推荐不仅基于用户的历史购买行为,而且融合了商品之间的知识关联,显著提高了推荐的准确性和用户的满意度。

案例二:智能问答系统

在一个大型知识共享平台上,开发团队构建了一个基于知识图谱的智能问答系统。该系统集成了广泛的领域知识,包括历史、科技、医学等,并通过知识图谱的结构化特性提供快速而准确的答案。当用户通过自然语言输入问题时,系统首先对问题进行语义分析,然后在知识图谱中寻找相关的信息节点,最终生成答案。

例如,当用户询问“爱因斯坦是因为什么理论获得诺贝尔奖?”时,系统不仅快速识别出“爱因斯坦”和“诺贝尔奖”是关键实体,还能理解用户是在询问与“理论”相关的具体信息。知识图谱中的链接帮助系统迅速找到了“光电效应理论”这一答案,并给出了详细解释。这种基于深度语义理解和精确知识检索的问答系统,在提供信息的同时也极大地提升了用户体验和系统的智能化水平。

通过这两个案例,我们可以看到知识图谱不仅仅是存储信息的结构,更是能够在各种AI应用中发挥核心作用的动态系统。这些成功的集成项目展示了知识图谱与人工智能融合的巨大潜力,为未来的技术发展提供了宝贵的参考和启示。

在这里插入图片描述

八、 结语:共创未来

随着文章的逐步深入,我们已经一起探索了知识图谱与人工智能(AI)的紧密联结,以及它们在现代技术生态中的互补作用。从知识图谱对AI可靠决策支持的价值,到AI技术在优化和扩展知识图谱上的巨大潜能,这一切都预示着一个由数据和智能引导的未来。

在结语中,我们不仅需要回顾知识图谱与人工智能融合的诸多益处,还要坦诚地面对这一进程中所遭遇的挑战。同时,我们也将展望未来,在知识图谱与AI交汇点上,我们如何能够不断推进边界,共创一个更智能、更互联的世界。

首先,让我们回顾一下知识图谱在加强人工智能的理解力方面起到了哪些关键作用。举例来说,Google的搜索引擎就采用了知识图谱来提升其语义搜索的能力,知识图谱使得搜索引擎不仅能理解关键词,还能理解上下文和实体间的关系。这样的技术进步不仅为用户提供了更加精准的搜索结果,而且极大地改善了用户体验。

然而,在知识图谱与AI结合的道路上,我们也面临着数据质量控制、知识的及时更新、以及实体关系的准确语义解释等挑战。例如,自动化的知识抽取系统可能由于上下文理解不足,抽取出错误的实体关系。这就要求我们不断完善算法,提升系统的语义理解能力,确保知识图谱的准确性和有效性。

展望未来,知识图谱与人工智能的结合将更加紧密。我们期待知识图谱能够实现更精准的自动更新,减少人工干预,同时通过深度学习模型提高其语义理解的深度。未来的知识图谱将不仅仅是静态的知识存储库,而是一个动态的、自我演化的智能系统。

最终,我们必须认识到,尽管已经取得了显著的进步,知识图谱和人工智能的发展之路依然漫长。继续深化研究,开发新技术,加强两者的协同效应,对于构建一个更加智能化的未来至关重要。无论是为了推动科技的创新,还是为了解决世界上棘手的问题,我们都需要持续地在这一领域投入精力和资源。

在这篇文章的最后,我想强调的是,无论我们在知识图谱与人工智能的结合上走得多远,人类的创造力和求知欲永远是不可或缺的。让我们继续携手前进,在知识的海洋中航行,共同创造一个智能互联的未来。

相关文章:

知识图谱与人工智能:携手共进

知识图谱与人工智能:携手共进 一、引言:知识图谱与人工智能的融合 在这个数据驱动的时代,知识图谱与人工智能(AI)之间的融合不仅是技术发展的必然趋势,也是推动各行各业创新的关键。知识图谱,作…...

全栈的自我修养 ———— react实现滑动验证

实现滑动验证 展示依赖实现不借助create-puzzle借助create-puzzle 展示 依赖 npm install rc-slider-captcha npm install create-puzzleapi地址 实现 不借助create-puzzle 需要准备两张图片一个是核验图形,一个是原图------> 这个方法小编试了后感觉比较麻烦…...

<<、>>和>>>

1.左移操作符(<<&#xff09;: 左移操作符将数字的二进制表示向左移动指定的位数。右侧空出的位用0填充。左移操作相当于乘以2的幂。 例如&#xff1a; int num 4; // 二进制表示为 0100 int shifted num << 1; // 结果为 8&#xff0c;二进制表示为 10002.带…...

【C++进阶】RAII思想&智能指针

智能指针 一&#xff0c;为什么要用智能指针&#xff08;内存泄漏问题&#xff09;内存泄漏 二&#xff0c;智能指针的原理2.1 RAII思想2.2 C智能指针发展历史 三&#xff0c;更靠谱的shared_ptr3.1 引用计数3.2 循环引用3.3 定制删除器 四&#xff0c;总结 上一节我们在讲抛异…...

探索量子计算:打开未来技术的大门

在科技领域&#xff0c;每一次技术革命都能开启新的可能性&#xff0c;推动人类社会进入一个新的时代。当前&#xff0c;量子计算作为一种前沿技术&#xff0c;正引领着下一轮科技革命的浪潮。本文将深入探索量子计算的奥秘&#xff0c;解析其工作原理&#xff0c;并通过一个简…...

C++11 设计模式2. 简单工厂模式

简单工厂&#xff08;Simple Factory&#xff09;模式 我们从实际例子出发&#xff0c;来看在什么情况下&#xff0c;应用简单工厂模式。 还是以一个游戏举例 //策划&#xff1a;亡灵类怪物&#xff0c;元素类怪物&#xff0c;机械类怪物&#xff1a;都有生命值&#xff0…...

RabbitMQ-死信队列常见用法

目录 一、什么是死信 二、什么是死信队列 ​编辑 三、第一种情景&#xff1a;消息被拒绝时 四、第二种场景&#xff1a;. 消费者发生异常&#xff0c;超过重试次数 。 其实spring框架调用的就是 basicNack 五、第三种场景&#xff1a; 消息的Expiration 过期时长或队列TTL…...

2024/4/14周报

文章目录 摘要Abstract文献阅读题目创新点CROSSFORMER架构跨尺度嵌入层&#xff08;CEL&#xff09;CROSSFORMER BLOCK长短距离注意&#xff08;LSDA&#xff09;动态位置偏置&#xff08;DPB&#xff09; 实验 深度学习CrossFormer背景维度分段嵌入&#xff08;DSW&#xff09…...

MySQL 社区版 安装总结

很早就安装过MySQL&#xff0c;没有遇到过什么问题&#xff0c;直接next就行了&#xff0c;这次在新电脑上安装却遇到了一些问题&#xff0c;记录一下。 安装的是MySQL社区版&#xff0c;下载地址是www.mysql.com&#xff0c;进入后选择DOWNLOAD页面&#xff0c;选择MySQL Com…...

二叉排序树的增删改查(java版)

文章目录 1. 基本节点2. 二叉排序树2.1 增加节点2.2 查找&#xff08;就是遍历&#xff09;就一起写了吧2.3 广度优先遍历2.4 删除&#xff08;这个有点意思&#xff09;2.5 测试样例 最后的删除&#xff0c;目前我测试的是正确的 1. 基本节点 TreeNode: class TreeNode{pri…...

linux下coredump问题的定位分析方法

(Owed by: 春夜喜雨 http://blog.csdn.net/chunyexiyu) 参考&#xff1a;https://blog.csdn.net/m0_73698480/article/details/130077852 最近定位了一段时间linux下的崩溃问题&#xff0c;又收集了一些思路&#xff0c;特整理记录一下。 常见coredump定位方法是&#xff1a…...

第十届蓝桥杯省赛真题(C/C++大学B组)

目录 试题 A: 组队 试题 B: 年号字串 试题 C: 数列求值 试题 D: 数的分解 试题 E: 迷宫 试题 F: 特别数的和 试题 G&#xff1a;完全二叉树的权值 试题 H&#xff1a;等差数列 试题 I&#xff1a;后缀表达式&#xff08;不一定对&#xff09; 试题 J&#xff1a;灵能…...

Scrapy 爬取m3u8视频

Scrapy 爬取m3u8视频 【一】效果展示 爬取ts文件样式 合成的MP4文件 【二】分析m3u8文件路径 视频地址&#xff1a;[在线播放我独自升级 第03集 - 高清资源](https://www.physkan.com/ph/175552-8-3.html) 【1】找到m3u8文件 这里任务目标很明确 就是找m3u8文件 打开浏览器…...

LVGL简单记录

1、 vs中代码旁边有个小锁删除git 2、Visual Studio 试图编译已删除的文件&#xff0c; 如果这个文件也是你不再需要编译的文件&#xff0c;且已经从文件系统中删除&#xff0c;你需要从 .vcxproj 文件中移除或者注释掉这一行&#xff0c;以停止Visual Studio尝试去编译一个不…...

计算机网络——ARP协议

前言 本博客是博主用于复习计算机网络的博客&#xff0c;如果疏忽出现错误&#xff0c;还望各位指正。 这篇博客是在B站掌芝士zzs这个UP主的视频的总结&#xff0c;讲的非常好。 可以先去看一篇视频&#xff0c;再来参考这篇笔记&#xff08;或者说直接偷走&#xff09;。 …...

【C++]C/C++的内存管理

这篇博客将会带着大家解决以下几个问题 1. C/C内存分布 2. C语言中动态内存管理方式 3. C中动态内存管理 4. operator new与operator delete函数 5. new和delete的实现原理 6. 定位new表达式(placement-new) 1. C/C内存分布 我们先来看下面的一段代码和相关问题 int global…...

深入理解计算机网络分层结构

一、 为什么要分层&#xff1f; 计算机网络分层的主要目的是将复杂的网络通信过程分解为多个相互独立的层次&#xff0c;每个层次负责特定的功能。这样做有以下几个好处&#xff1a; 模块化设计&#xff1a;每个层次都有清晰定义的功能和接口&#xff0c;使得网络系统更易于设…...

亚马逊云科技CTO带你学习云计算降本增效秘诀

2023亚马逊云科技一年一度的重磅春晚--Re:invent上有诸多不同话题的主题Keynote&#xff0c;这次小李哥带大家复盘来自亚马逊CTO: Wener博士的主题演讲: 云架构节俭之道1️⃣节俭对于云计算为什么重要&#xff1f; ▶️企业基础设施投入大&#xff0c;利用好降本策略可以减少巨…...

快速上手Vue

目录 概念 创建实例 插值表达式 Vue响应式特性 概念 Vue是一个用于 构建用户界面 的 渐进式 框架 构建用户界面&#xff1a;基于数据渲染出用户看到的页面 渐进式&#xff1a;Vue相关生态&#xff1a;声明式渲染<组件系统<客户端路由<大规模状态管理<构建工具 V…...

java 目录整理

Java知识相关目录主要参考黑马程序员 风清扬老师的视屏,参考链接为 Java_黑马刘意(风清扬)2019最新版_Java入门视频_Java入门_Java编程_Java入门教程_黑马教程_黑马程序员_idea版_哔哩哔哩_bilibili 1、java 基础 java基本认识?java跨平台原理?jdk、jre、jvm的联系? 链接:…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...