深入理解图形处理器(GPU):加速人工智能和大数据计算的引擎
文章目录
- 1. 什么是GPU?
- 2. GPU的工作原理
- 3. GPU的应用领域
- 4. GPU与CPU的比较
- 参考与推荐
前言:
图形处理器(GPU)不再仅仅是用于图形渲染的硬件设备。如今,GPU已经成为加速人工智能、大数据计算和科学研究的关键引擎。本文将深入探讨GPU的工作原理、应用领域以及它在当今技术领域中的重要性。
1. 什么是GPU?
GPU(Graphics processing unit)是一种专门设计用于处理图形和图像的处理器。它的设计初衷是加速图形渲染,以提升计算机图形的性能和质量。
与中央处理器(CPU)不同,GPU拥有大量的小型处理单元,能够并行执行大量相似的任务。这使得GPU在处理大规模数据集和复杂算法时比CPU更加高效。
2. GPU的工作原理
GPU的工作原理与CPU有所不同:
- CPU通常由少量的核心组成,每个核心能够处理各种不同类型的任务,但是串行执行。
- GPU拥有成百上千个核心,这些核心被组织成称为流处理器的小型处理单元。这些流处理器能够并行执行相同的指令,从而加速计算。
- GPU的并行性使其在处理大规模数据和执行复杂算法时表现出色。它可以同时处理多个数据元素,加速矩阵运算、图像处理、机器学习和深度学习等任务。
3. GPU的应用领域
-
人工智能和深度学习: GPU在训练和推理深度神经网络方面表现出色。由于深度学习模型通常需要大量的计算资源来训练,GPU的并行性能使其成为训练大型神经网络的理想选择。
-
科学计算: 许多科学领域,如天气预测、气候建模、医学成像等,需要进行大规模数据分析和模拟。GPU可以加速这些复杂的科学计算任务,提高计算效率和精度。
-
大数据分析: 在大数据领域,GPU可以加速数据处理、分析和可视化,帮助企业和研究机构快速提取有价值的信息和洞见。
-
游戏开发: GPU最初是为了图形渲染而设计的,因此在游戏开发领域有着广泛的应用。它可以提供高品质的图形效果和流畅的游戏体验。
4. GPU与CPU的比较
GPU和CPU在设计和功能上有所不同,它们各自有着不同的优势和劣势。
- CPU适用于顺序执行的通用计算任务
- GPU则适用于并行计算和大规模数据处理。在某些任务中,GPU的计算性能比CPU高出几个数量级,但在其他任务中也可能没有明显优势。
下图清晰地展示了CPU和GPU之间的不同。

CPU(中央处理器):
- CPU具有多个核心,每个核心都有自己的控制单元和L1缓存。
- 它还有共享的L2和L3缓存以及DRAM(动态随机存取存储器)。
- CPU适用于复杂任务处理,具备更多高级功能和控制能力。
GPU(图形处理器):
- GPU由大量小型处理单元组成,共享一个较大的L2缓存和DRAM。
- 主要用于并行处理大量简单任务,例如图形渲染、深度学习等。
以下是图像中的一些标记:
| 颜色 | CPU | GPU |
|---|---|---|
| 绿色 | 内核 | 小型处理单元 |
| 黄色 | 控制单元 | 控制单元 |
| 紫色 | L1缓存 | L1缓存 |
| 蓝色 | L2/L3缓存 | 共享的L2缓存 |
| 橙色 | DRAM | DRAM |
参考与推荐
参考: CUDA C++ Programming Guide
推荐: 大语言模型
相关文章:
深入理解图形处理器(GPU):加速人工智能和大数据计算的引擎
文章目录 1. 什么是GPU?2. GPU的工作原理3. GPU的应用领域4. GPU与CPU的比较参考与推荐 前言: 图形处理器(GPU)不再仅仅是用于图形渲染的硬件设备。如今,GPU已经成为加速人工智能、大数据计算和科学研究的关键引擎。本…...
【Java探索之旅】数组使用 初探JVM内存布局
🎥 屿小夏 : 个人主页 🔥个人专栏 : Java编程秘籍 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一、数组的使用1.1 元素访问1.2 数组遍历 二、JVM的内存布局🌤️全篇总结 …...
RabbitMQ消息模型之Simple消息模型
simple消息模型 生产者 package com.example.demo02.mq.simple;import com.example.demo02.mq.util.ConnectionUtils; import com.rabbitmq.client.Channel; import com.rabbitmq.client.Connection;import java.io.IOException;/*** author Allen* 4/10/2024 8:07 PM* versi…...
设计模式系列:简单工厂模式
作者持续关注 WPS二次开发专题系列,持续为大家带来更多有价值的WPS二次开发技术细节,如果能够帮助到您,请帮忙来个一键三连,更多问题请联系我(QQ:250325397) 目录 定义 特点 使用场景 优缺点 (1) 优点…...
解决 windows+Ubuntu 时间不同步问题
本文所使用的 Ubuntu 系统版本是 Ubuntu 22.04 ! 如果你的电脑装了 Windows Ubuntu 系统,肯定会遇到时间不同步的问题。那么如何解决呢?参考步骤如下: # 步骤一:进入到 Ubuntu 系统# 步骤二:执行如下三条命令即可 sud…...
Learn SRP 01
学习链接:Custom Render Pipeline (catlikecoding.com) 使用Unity版本:Unity 2022.3.5f1 1.A new Render Pipeline 1.1Project Setup 创建一个默认的3D项目,项目打开后可以到默认的包管理器删掉所有不需要的包,我们只使用Unit…...
NL2SQL进阶系列(4):ConvAI、DIN-SQL、C3-浙大、DAIL-SQL-阿里等16个业界开源应用实践详解[Text2SQL]
NL2SQL进阶系列(4):ConvAI、DIN-SQL等16个业界开源应用实践详解[Text2SQL] NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(Spider vs BIRD)全面对比优劣分析[Text2SQL、Text2DSL] NL2SQL基础系列(2):…...
Python统计分析库之statsmodels使用详解
概要 Python statsmodels是一个强大的统计分析库,提供了丰富的统计模型和数据处理功能,可用于数据分析、预测建模等多个领域。本文将介绍statsmodels库的安装、特性、基本功能、高级功能、实际应用场景等方面。 安装 安装statsmodels库非常简单,可以使用pip命令进行安装:…...
A Learning-Based Approach for IP Geolocation(2010年)
下载地址:Towards IP geolocation using delay and topology measurements | Proceedings of the 6th ACM SIGCOMM conference on Internet measurement 被引次数:185 Eriksson B, Barford P, Sommers J, et al. A learning-based approach for IP geolocation[C]//Passive …...
高创新 | [24年新算法]NRBO-XGBoost回归+交叉验证基于牛顿拉夫逊优化算法-XGBoost多变量回归预测
高创新 | [24年新算法]NRBO-XGBoost回归交叉验证基于牛顿拉夫逊优化算法-XGBoost多变量回归预测 目录 高创新 | [24年新算法]NRBO-XGBoost回归交叉验证基于牛顿拉夫逊优化算法-XGBoost多变量回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现 [24年新算…...
Web APP设计:将多个相近的机器学习模型融合到一个Web APP中
将多个相近的机器学习模型融合到一个Web APP中 FUSE-ML是一个用于预测腰椎融合术后效果的APP,它可以做出三个不同的结论,分别评价术后的腰痛、腿痛和日常功能是否提高。 这估计是部署了三个机器学习模型在这个APP中,因为一个机器学习模型仅…...
网络爬虫:定义、应用及法律道德考量
网络爬虫技术在当今数据驱动的世界中发挥着重要作用。本文将从网络爬虫的定义和主要功能,其在业界的应用实例,以及涉及的法律和道德问题三个方面进行深入探讨。 1. 爬虫的定义和主要功能 网络爬虫,也称为网页爬虫或蜘蛛,是一种…...
(三)ffmpeg 解码流程以及函数介绍
一、视频解码流程 二、函数介绍 1.avformat_network_init 函数作用: 执行网络库的全局初始化。这是可选的,不再推荐。 此函数仅用于解决旧GnuTLS或OpenSSL库的线程安全问题。如果libavformat链接到这些库的较新版本,或者不使用它们&#…...
go work模块与go mod包管理是的注意事项
如下图所示目录结构 cmd中是服务的包,显然auth,dbtables,pkg都是为cmd服务的。 首先需要需要将auth,dbtables,pkg定义到go.work中,如下: 在这样在各个单独的go mod管理的模块就可以互相调用了。一般情况下这些都是IDE自动进行的,…...
华为OD-C卷-最长子字符串的长度(一)[100分]
题目描述 给你一个字符串 s,首尾相连成一个环形,请你在环中找出 o 字符出现了偶数次最长子字符串的长度。 输入描述 输入是一个小写字母组成的字符串 输出描述 输出是一个整数 备注 1 ≤ s.length ≤ 500000s 只包含小写英文字母用例1 输入 alolobo输出 6说明 最长子字…...
实战小项目 | ESP32-S3和ESP32-C3通过ESP-Mesh-Lite组网 温湿度传感器案例
传统Wi-Fi网络所有终端设备都需要直接与路由器相连,这使得Wi-Fi的覆盖区域受到路由器位置的限制,可接入终端设备的数量也受到路由器容量的限制。而乐鑫ESP-Mesh-Lite Wi-Fi组网方案,所有终端设备都可以与相邻设备连接,摆脱了对路由…...
SiLM5350系列带米勒钳位的单通道隔离驱动器 助力汽车与工业应用实现稳定与高效的解决方案
带米勒钳位的隔离驱动SiLM5350系列 单通道 30V,10A 带米勒钳位的隔离驱动 具有驱动电流更大、传输延时更低、抗干扰能力更强、封装体积更小等优势, 为提高电源转换效率、安全性和可靠性提供理想之选。 SiLM5350系列产品描述: SiLM5350系列是单通道隔离驱…...
c#中怎么自动下载软件
以下是一个简单的 C# 示例,演示如何使用 WebClient 类下载软件: using System; using System.Net; class Program { static void Main(string[] args) { // 要下载的文件 URL string fileUrl "https://example.com/path/to/file"; // 本地保…...
Unity笔记之下拉刷新列表
这样的效果; 代码: using System; using System.Collections; using System.Collections.Generic; using Sirenix.OdinInspector; using UnityEngine; using UnityEngine.EventSystems; using UnityEngine.UI;public class ScrollRectUpdateView : Mon…...
防火墙操作!
当小编在Linux服务器上部署好程序以后,但是输入URL出现下述情况,原来是防火墙的原因!! 下面是一些防火墙操作! 为保证系统安全,服务器的防火墙不建议关闭!! 但是,我们可…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
