密码学 | 椭圆曲线数字签名方法 ECDSA(下)
目录
10 ECDSA 算法
11 创建签名
12 验证签名
13 ECDSA 的安全性
14 随机 k 值的重要性
15 结语
⚠️ 原文:Understanding How ECDSA Protects Your Data.
⚠️ 写在前面:本文属于搬运博客,自己留着学习。同时,经过几天的折磨后,我对椭圆曲线已经有点基础了,因此删除了一些我认为无关紧要的原文。
10 ECDSA 算法
现在让我们来谈谈 ECDSA 签名算法。
对于 ECDSA,你首先需要知道你的曲线参数,即 a、b、p、N 和 G。你已经知道 a 和 b 是曲线函数的参数:
还知道 p 是模数,N 是曲线的点数。但还需要知道 G 是什么。G 代表一个 “参考点” 或者说一个 “原点”,参考点可以是曲线上的任何一点。
NIST(美国国家标准与技术研究院)和 SECG(高效加密标准组)提供了预先制作和标准化的曲线参数,这些参数被认为是有保障且高效的。
私钥是一个 160 位的随机数,而公钥是曲线上的一个点,它是私钥与参考点 G 的点乘结果。设 dA 为私钥,Qa 为公钥,则有:Qa = dA * G,其中 G 是曲线参数中的参考点。
不懂 dA 和 Qa 为什么要这样大小写 😇
11 创建签名
一个签名的长度是 40 个字节,它由两个 20 字节的值组成,第一个称为 R,第二个称为 S,所以 (R, S) 共同构成 ECDSA 签名。具体流程如下:
首先,您必须生成一个随机值 k(20 字节),并使用 “点乘法” 计算 P 点:
P 点的 x 坐标值即为 R,它的长度是 20 个字节。
为了计算 S,您必须对消息进行 SHA1 散列,得到一个长为 20 个字节的值,我们将称之为 z 。现在您可以使用以下方程计算 S:
请注意 k^{-1},它是 k 的 “模乘逆”。虽然 k^{-1} 本质上是 k 的倒数,但由于我们处理的是整数,所以这是不可能的。因此要求 k^{-1} 是一个整数,它能够使得 (k^{-1} * k) mod p 等于 1 。
暂时还没有学 “模乘逆”,应该就是一个求模数的方法。
再次提醒您,k 是用于生成 R 的随机数,z 是要被签署的消息的散列,dA 是私钥,R 是 k*G 的 x 坐标值,其中 G 是曲线参数的参考点。
12 验证签名
既然您已经有了签名,您想要验证它,这也是相当简单的。
您使用这个方程来计算一个点 P:
只要 P 点的 x 坐标值等于 R,就意味着签名是有效的,否则它就不是。
按照上述方程把 P 点计算出来,只要这个 P 点的 x 坐标值等于 R,就说明签名有效。
很简单,对吧?现在让我们看看为什么成立,这需要一些数学来验证。
我们有:
可以看出,算 P 点的时候只需要使用一些公开的数据,而不会涉及私钥。
其中
因此
我们代入 P 点的坐标值有:
我们可以通过消除 G 来简化,得到:
通过求 k 和 S 的逆,我们得到:
这正是用于生成签名的方程,因此等号左右两边的式子是相等的。这就是为什么您可以使用上面的第一个方程来验证签名。
签名的时候会需要使用私钥 dA,验证的时候只需要使用公钥 Qa,这就是所谓的零知识证明吧。
13 ECDSA 的安全性
因为 Qa=dA*G、P=k*G,又因为 ECDSA 的 “点乘法” 是一个陷门函数 —— 在第 9 步中解释过 —— 所以我们不能根据 Qa 和 P 来倒推 dA 或 k,这使得 ECDSA 算法是安全的。
我们没有办法找到私钥,也没有办法在不知道私钥的情况下伪造签名。
为什么 “也没有办法在不知道私钥的情况下伪造签名”?
14 随机 k 值的重要性
现在让我们讨论一下索尼在 Playstation 3 上使用的 ECDSA 签名是如何出现缺陷的,以及这是如何允许黑客获取 PS3 的 ECDSA 私钥的。
生成签名所需的方程如下:
S 方程的强度在于它一个方程含有两个未知数,即 k 和 dA,因此无法进行求解。
然而,算法的安全性基于其实现,即确保 “k 是随机生成的” 非常重要,确保没有任何人能够猜测、计算,或者使用时序攻击或其他任何类型的攻击来找到随机值 k 。
索尼
但是索尼在实现上犯了一个巨大的错误,他们在任何地方都使用相同的 k 值。
这意味着如果你有两个签名,它们都有相同的 k,那么它们都会有相同的 R 值。同时这意味着,只要你拥有同一个人的两个签名 S 和 S',就能计算出 k 值。
首先让 S 和 S' 相减:
整理得到
从而有
其中,z 和 z'、S 和 S' 都是已知的。
一旦得到了 k,那么 S 方程就只含一个未知数了,从而可以很容易地解出 dA:
一旦得到了私钥 dA,你可以用它来签署自己的文件,而 PS3 将会认为它是索尼签名的合法文件。这就是为什么确保用于生成签名的随机数实际上是 “密码学上随机” 的非常重要的原因。
比特币
另一个例子是当一些比特币客户端在某些浏览器和某些 Android 客户端上使用非密码学随机数生成器时,这导致它们用相同的 k 值签署交易,恶意人士能够找到他们的比特币钱包私钥并盗取他们的资金。
小结
这显示了每次制作签名时使用真正随机数的重要性,因为如果你签名对的 (R, S) 中的 R 值在两个不同的签名中相同,你就会暴露私钥。
理论上,ECDSA 算法非常安全,不可能找到私钥。当然,它的前提是 “算法实现是正确的”。如果有一种方法可以找到私钥,那么每个计算机、网站、系统的安全性都可能受到威胁。
15 结语
最后!我希望这能让很多人更清楚地理解这个算法。我知道这仍然非常复杂和难以理解。我通常试图让非技术人士更容易理解事物,但这个算法太复杂了,无法用更简单的术语来解释。
但是,如果您是一名开发人员或数学家,或者您对学习此内容感兴趣,因为您想帮助或简单地获取知识,那么我相信这为您提供了开始学习或至少理解这个被称为 “ECDSA” 的未知野兽的概念的信息。
附言:在本文中,我使用了 “160位” 来讨论 ECDSA 签名,因为它通常与 160 位的 SHA1 散列值(20 字节)匹配,而且 PS3 安全机制就是使用的这种组合。但是,该算法本身可以使用任何大小的数字。本文可能存在其他不准确之处,但就像我说的,我不是专家,而且我已经尽可能地将内容简化,同时没有删除关于算法的任何信息。
相关文章:
密码学 | 椭圆曲线数字签名方法 ECDSA(下)
目录 10 ECDSA 算法 11 创建签名 12 验证签名 13 ECDSA 的安全性 14 随机 k 值的重要性 15 结语 ⚠️ 原文:Understanding How ECDSA Protects Your Data. ⚠️ 写在前面:本文属于搬运博客,自己留着学习。同时,经过几…...

拟态个人主页UI源码
拟态个人主页 效果图源代码领取源码 效果图 PC端 移动端 源代码 index.php <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><title>孤客 |佩恩</title><meta name"keywords" co…...

移动硬盘无法打开?别慌!这里有救星!
移动硬盘作为现代生活中重要的数据存储工具,承载着我们大量的文件和数据。然而,有时我们会遇到移动硬盘无法打开的情况,这往往让人焦虑不已。那么,当移动硬盘无法打开时,我们应该如何应对呢? 移动硬盘无法打…...

windows下已经创建好了虚拟环境,但是切换不了的解决方法
用得多Ubuntu,今天用Windows重新更新anaconda出问题,重新安装之后,打开pycharm发现打开终端之后,刚开始是ps的状态,后面试了网上改cmd的方法,终端变成c盘开头了 切换到虚拟环境如下:目前的shell…...

Java反序列化基础-类的动态加载
类加载器&双亲委派 什么是类加载器 类加载器是一个负责加载器类的对象,用于实现类加载的过程中的加载这一步。每个Java类都有一个引用指向加载它的ClassLoader。而数组类是由JVM直接生成的(数组类没有对应的二进制字节流) 类加载器有哪…...

课堂行为动作识别数据集
一共8884张图片 xml .txt格式都有 Yolo可直接训练 已跑通 动作类别一共8类。 全部为教室监控真实照片,没有网络爬虫滥竽充数的图片,可直接用来训练。以上图片均一一手工标注,标签格式为VOC格式。适用于YOLO算法、SSD算法等各种目标检测算法…...
【数据库】MVCC
MVCC是一种用来解决读写冲突的无锁并发控制,也就是为事务分配单项增长的时间戳,为每个修改保存一个版本,版本与事务时间戳关联,读操作只读该事务开始前的数据库的快照 MVCC,全称Multi-Version Concurrency Control&am…...

快速排序题目SelectK问题
力扣75.颜色分类 给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。 我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。 必须在不使用库内置的 sor…...
es6解构赋值
ES6解构赋值是一种简洁的为变量赋值的方式,它允许我们从数组或对象中提取值并赋给对应的变量。 解构赋值在ES6中被引入,主要目的是为了简化代码,提高代码的可读性。以下是解构赋值的基本用法: 数组解构:当我们需要从数…...

Jenkins上面使用pnpm打包
问题 前端也想用Jenkins的CI/CD工作流。 步骤 Jenkins安装NodeJS插件 安装完成,记得重启Jenkins。 全局配置nodejs Jenksinfile pipeline {agent anytools {nodejs "18.15.0"}stages {stage(Check tool version) {steps {sh node -vnpm -vnpm config…...

设计编程网站集:动物,昆虫,蚂蚁养殖笔记
入门指南 区分白蚁与蚂蚁 日常生活中,人们常常会把白蚁与蚂蚁搞混淆,其实这两者是有很大区别的,养殖方式差别也很大。白蚁主要食用木质纤维,会给家庭房屋带来较大危害,而蚂蚁主要采食甜食和蛋白质类食物,不…...
面经学习(众智宏图实习)
个人评价 难度还是有的,中等难度吧,可能是因为项目使用的是物流项目,该项目本来就比较庞大难度比较高,流的八股文我真的是一点不会,还需要加强,reidis的多路io复用模型没有深问,要是问了就寄了&…...

DataGrip2024安装包(亲测可用)
目录 一、软件简介 二、软件下载 一、软件简介 DataGrip是由JetBrains公司开发的一款强大的关系数据库集成开发环境(IDE),专为数据库开发人员和数据库管理员设计。它提供了一个统一的界面,用于管理和开发各种关系型数据库&#x…...

【InternLM 实战营第二期-笔记4】XTuner 微调个人小助手认知
书生浦语是上海人工智能实验室和商汤科技联合研发的一款大模型,很高兴能参与本次第二期训练营,我也将会通过笔记博客的方式记录学习的过程与遇到的问题,并为代码添加注释,希望可以帮助到你们。 记得点赞哟(๑ゝω╹๑) XTuner 微调个人小助手…...

<计算机网络自顶向下> CDN
视频服务挑战 规模性异构性:不同用户有不同的能力(比如有线接入和移动用户;贷款丰富和受限用户)解决方法是:分布式的应用层面的基础设施CDN 多媒体:视频 视频是固定速度显示的一系列图像的序列ÿ…...

【Git教程】(十二)工作流之项目设置 — 何时使用工作流,工作流的结构,项目设置概述、执行过程及其实现 ~
Git教程 工作流之项目设置 1️⃣ 何时使用工作流2️⃣ 工作流的结构3️⃣ 概述4️⃣ 使用要求5️⃣ 执行过程及其实现5.1 基于项目目录创建一个新的版本库5.2 以文件访问的方式共享版本库5.3 用 Git daemon 来共享版本库5.4 用 HTTP 协议来共享版本库5.5 用 SSH 协议来共享版…...
Java 排序算法
冒泡排序 冒泡排序(Bubble Sort)是一种简单的排序算法,它通过重复地遍历要排序的数列,比较相邻元素的大小并交换位置,使得较大的元素逐渐向数列的末尾移动。 以下是Java实现的冒泡排序代码: public stat…...

【重磅更新】开源表单系统填鸭表单v5版发布!
亲爱的TDucker,你们好。 真诚感谢您对填鸭表单的关注与支持。今天我们将为您带来新版本的更新说明,以便您更好的使用我们的产品。 社区版版V5更新概览: ✅ 增加WebHook数据推送功能,集成TReport实现数据大屏展示。 ✅ 增加主题…...

保姆级教程 | Adobe Illustrator 中插入数学符号
背景 鉴于Adobe Illustrator作为比较专业的绘图/组图软件,我的论文数据作图都会选择先在origin中把原始数据绘制好,后都放入AI中细修。由于在作图过程中需要插入数学符号,但仿佛没有PowerPoint用起来那么熟悉,遂记录下。 步骤 …...

数据结构——双向循环链表
目录 前言 一、链表的分类 二、双向循环链表 2.1 开辟新的节点 2.2 链表初始化 2.3 打印链表 2.4 链表的尾插 2.5 链表的头插 2.6 链表的尾删 2.7 链表的头删 2.8 查找链表 2.9 在pos位置之后插入数据 2.10 删除pos位置的数据 三、完整代码实现 四、顺序表和双向…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...