Javascript 设计模式
设计模式的五大设计原则(SOLID)
单一职责:一个程序只需要做好一件事。如果功能过于复杂就拆分开,保证每个部分的独立
开放封闭原则:对扩展开放,对修改封闭。增加需求时,扩展新代码,而不是修改源代码。这是软件设计的终极目标。
里氏置换原则:子类能覆盖父类,父类能出现的地方子类也能出现。
接口独立原则:保持接口的单一独立,避免出现“胖接口”。这点目前在TS中运用到。
依赖导致原则:面向接口编程,依赖于抽象而不依赖于具体。使用方只专注接口而不用关注具体类的实现。俗称“鸭子类型”
工厂模式
工厂模式是用来创建对象的常见设计模式,在不暴露创建对象的具体逻辑,而是将逻辑进行封装,那么它就可以被称为工厂。工厂模式又叫做静态工厂模式,由一个工厂对象决定创建某一个类的实例。
class Plant {constructor(name) {this.name = name;}grow() {console.log("grow up");}
}class Apple extends Plant {constructor(name, flavour) {super(name)this.flavour = flavour;}
}class Orange extends Plant {constructor(name, flavour) {super(name)this.flavour = flavour;}
}class Factory {static create(type) {switch (type) {case 'apple':return new Apple('xiao ping','sweet')case 'orange':return new Orange('xiao ju','sour')default:throw new Error("Unknown plant type")}}
}let apple = Factory.create('apple');
console.log(apple.flavour)
let orange = Factory.create('orange');
console.log(orange.flavour)
小结:
优点
调用者创建对象时只要知道其名称即可
扩展性高,如果要新增一个产品,直接扩展一个工厂类即可。
隐藏产品的具体实现,只关心产品的接口。
缺点
每次增加一个产品时,都需要增加一个具体类,这无形增加了系统内存的压力和系统的复杂度,也增加了具体类的依赖
单例模式
单例模式的思路是:保证一个类只能被实例一次,每次获取的时候,如果该类已经创建过实例则直接返回该实例,否则创建一个实例保存并返回。
单例模式很常用,比如:
vue项目中的Vue实例
node项目中的App实例
vuex react-redux 中的store
全局唯一的组件,像弹出框,模态窗口,购物车,登录框等
class LoginFrame {static instance = nullconstructor(state){this.state = state}show(){if(this.state === 'show'){console.log('登录框已显示')return}this.state = 'show'console.log('登录框展示成功')}hide(){if(this.state === 'hide'){console.log('登录框已隐藏')return}this.state = 'hide'console.log('登录框隐藏成功')}// 通过静态方法获取静态属性instance上是否存在实例,如果没有创建一个并返回,反之直接返回已有的实例static getInstance(state){if(!this.instance){this.instance = new LoginFrame(state)}return this.instance}
}
const p1 = LoginFrame.getInstance('show')
const p2 = LoginFrame.getInstance('hide')
console.log(p1 === p2) // true
小结:
优点
内存中只有一个实例,减少了内存的开销。
避免了对资源多重的占用。
缺点
违反了单一职责,一个类应该只关心内部逻辑,而不用去关心外部的实现
原型模式
function Person(name){this.name = name;
}Person.prototype.getName = function(){return this.name;
}let p1 = new Person('san')
let p2 = new Person('si')
console.log(p1.getName === p2.getName)
更多关于prototype的知识请去 JS原型与原型链详解
适配器模式
适配器模式的作用是解决两个软件实体间的接口不兼容的问题。使用适配器模式之后,原本由于接口由于接口不兼容而不能工作的两个软件实体可以一起工作。
class Power {charge(){return '220v'}
}class Adapter{constructor(){this.power = new Power()}charge(){let v= this.power.charge();return `${v} => 12v`}
}class Client{constructor(){this.adapter = new Adapter()}use(){console.log(this.adapter.charge())}
}let client = new Client()
client.use()
小结:
优点
让任何两个没有关联的类可以同时有效运行,并且提高了复用性、透明度、以及灵活性
缺点
过多的使用适配器模式,会让系统变得零乱,不易整体把控。建议在无法重构的情况下使用适配器。
代理模式
Proxy 可以理解成,在目标对象之前架设一层“拦截”,外界对该对象的访问,都必须先通过这层拦截,因此提供了一种机制,可以对外界的访问进行过滤和改写。Proxy 这个词的原意是代理,用在这里表示由它来“代理”某些操作,可以译为“代理器”
let lily = {name: 'lily',age: '30',height: '160'
}// new Proxy(target, handler);
// new Proxy()表示生成一个Proxy实例,target参数表示所要拦截的目标对象,handler参数也是一个对象,用来定制拦截行为。let lilyMa = new Proxy(lily, {//get方法的两个参数分别是目标对象和所要访问的属性。get(target, key) {if (key === 'age') {return target.age - 2} else if (key === 'height') {return target.height + 5} else {return target[key]}},set(target,key,value) {if(key ==='boyfriend'){let boyfriend = value;if(boyfriend.age >40){throw new Error('too old!')} else if(boyfriend.salary <20000){throw new Error('too poor!')} else{target[key] = value}}}
}) console.log(lilyMa.age)
lilyMa.boyfriend = {age:35,salary:25000,height:180}
小结:
代理模式符合开放封闭原则
本体对象和代理对象拥有相同的方法,在用户看来并不知道请求的本体对象还是代理对象。
代理模式 vs 适配器模式 适配器提供不同的接口,代理模式提供一摸一样的接口
代理模式 vs 装饰器模式 装饰器模式原来的功能不变还可以使用,代理模式改变原来的功能
优点
职责清晰,高扩展性,智能化
缺点
当对象和对象之间增加了代理可能会影响到处理的速度。
实现代理需要额外的工作,有些代理会非常的复杂。
观察者模式(订阅-发布模式)
观察者模式定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,
所有依赖于它的对象将得到通知。
如:当你给DOM绑定一个事件就已经使用了发布订阅模式,通过订阅DOM上的click事件,当被点击时会向订阅者发布消息。
class Star{constructor(name){this.name = name;this.state = '';this.observers = [];}getState(){return this.state;}setState(state){this.state = state;this.notifyAllObservers()}attach(observer){this.observers.push(observer)}notifyAllObservers(){if(this.observers.length>0){this.observers.forEach(observer=>observer.update())}}
}class Fun{constructor(name,star){this.name = name;this.star = star;this.star.attach(this)}update(){console.log(`${this.star.name} know ${this.star.getState()}`)}
}let s = new Star('liushishi')
let f = new Fun('me',s)
s.setState('xinai')
小结:
发布订阅模式可以使代码解耦,满足开放封闭原则
当过多的使用发布订阅模式,如果订阅消息始终都没有触发,则订阅者一直保存在内存中。
优点
观察者和被观察者它们之间是抽象耦合的。并且建立了触发机制。
缺点
当订阅者比较多的时候,同时通知所有的订阅者可能会造成性能问题。
在订阅者和订阅目标之间如果循环引用执行,会导致崩溃。
发布订阅模式没有办法提供给订阅者所订阅的目标它是怎么变化的,仅仅只知道它变化了。
装饰器模式
装饰者模式能够在不更改源代码自身的情况下,对其进行职责添加。相比于继承装饰器的做法更轻巧。通俗的讲我们给心爱的手机上贴膜,带手机壳,贴纸,这些就是对手机的装饰。
class Duck {constructor(name) {this.name = name;}eat(food) {console.log(`eat ${food}`)}
}class TangDuck {constructor(name) {this.duck = new Duck(name);}eat(food) {this.duck.eat(food);console.log('thanks')}
}let d = new TangDuck();
d.eat('apple');
还有ES6的Decorator
优点
装饰类和被装饰类它们之间可以相互独立发展,不会相互耦合,装饰器模式是继承的一个替代模式,它可以动态的扩展一个实现类的功能。
缺点
多层的装饰会增加复杂度
外观模式
外观模式本质就是封装交互,隐藏系统的复杂性,提供一个可以访问的接口。由一个将子系统一组的接口集成在一起的高层接口,以提供一个一致的外观,减少外界与多个子系统之间的直接交互,从而更方便的使用子系统。
class Sum{sum(a,b){return a+b}
}class Minus{minus(a,b){return a-b}
}
class Mutify{mutify(a,b){return a*b}
}
class Divide{divide(a,b){return a/b}
}class Calculate{constructor(a,b){this.sumc = new Sum(a,b);this.minusc = new Minus(a,b);this.mutifyc = new Mutify(a,b);this.dividec = new Divide(a,b);}sum(a,b){return this.sumc.sum(a,b)}minus(a,b){return this.minusc.minus(a,b)}mutify(a,b){return this.mutifyc.mutify(a,b)}divide(a,b){return this.dividec.divide(a,b)}
}let calculate = new Calculate()
console.log(calculate.sum(1,2))
优点
减少系统的相互依赖,以及安全性和灵活性
缺点
违反开放封闭原则,有变动的时候更改会非常麻烦,即使继承重构都不可行。
状态模式
允许一个对象在其内部状态改变的时候改变其行为,对象看起来似乎修改了它的类,通俗一点的将就是记录一组状态,每个状态对应一个实现,实现的时候根据状态去运行实现。
class SuccessState {show(){console.log('green')}
}class WarningState {show(){console.log('yellow')}
}class ErrorState {show(){console.log('red')}
}class Battery {constructor(){this.amout = 'high'this.state = new SuccessState()}show(){this.state.show();if(this.amout == 'high'){this.amout= 'middle';this.state = new WarningState()} else if(this.amout == 'middle'){this.amout= 'low';this.state = new ErrorState()}}
}let b = new Battery()
b.show()
b.show()
b.show()
优点
将所有与某个状态有关的行为放到一个类中,并且可以方便地增加新的状态,只需要改变对象状态即可改变对象的行为。
允许状态转换逻辑与状态对象合成一体,而不是某一个巨大的条件语句块。
可以让多个环境对象共享一个状态对象,从而减少系统中对象的个数。
缺点
状态模式的使用必然会增加系统类和对象的个数。
状态模式的结构与实现都较为复杂,如果使用不当将导致程序结构和代码的混乱。
状态模式对"开闭原则"的支持并不太好,对切换状态的状态模式增加新的状态类需要修改那些负责状态转换的源代码,否则无法切换到新增状态,而且修改某个状态类的行为也需修改对应类的源代码。
策略模式
策略模式指的是定义一系列算法,把他们一个个封装起来,目的就是将算法的使用和算法的实现分离开来。同时它还可以用来封装一系列的规则,比如常见的表单验证规则,只要这些规则指向的目标一致,并且可以被替换使用,那么就可以用策略模式来封装它们。
class Customer{constructor(kind){this.kind = kind;}pay(amount){return this.kind.pay(amount)}
}class Normal{pay(amount){return amount}
}class Member{pay(amount){return amount*.9}
}class VIP{pay(amount){return amount*.8}
}let c1 = new Customer(new Normal()).pay(100);
console.log(c1)
let c2 = new Customer(new Member()).pay(100)
console.log(c2)
let c3 = new Customer(new VIP()).pay(100)
console.log(c3)
优点
算法可以自由切换,避免了使用多层条件判断,增加了扩展性
缺点
策略类增多,所有策略类都需要对外暴露。
相关文章:
Javascript 设计模式
设计模式的五大设计原则(SOLID)单一职责:一个程序只需要做好一件事。如果功能过于复杂就拆分开,保证每个部分的独立开放封闭原则:对扩展开放,对修改封闭。增加需求时,扩展新代码,而不是修改源代码。这是软件设计的终极…...

JAVA-文档工具screw-gui
前言 为什么萌生了写文档工具得想法,因为在项目开发得过程中,经常需要补充一些文档,比如数据库文档、详细设计文档等等,文档与项目相绑定,在项目需求新增或变更时,文档也需要反反复复得修改。 1. 数据库…...

开源鸿蒙南向嵌入学习笔记——NAPI框架学习(一)
开源鸿蒙南向嵌入学习笔记——NAPI框架学习(一) 前言——系列介绍 本系列文章主要是记录笔者在鸿蒙南向的学习与工作中的知识点笔记记录,其中不止会针对鸿蒙中的学习问题进行思考与记录,也会对涉及到的一些嵌入式等其他领域知识&…...

Spring - Spring框架概述面试题总结
文章目录01. 什么是Spring?02. Spring框架的设计目标,设计理念,和核心是什么?03. Spring的优点是什么?04. Spring框架中都用到了哪些设计模式?05. Spring有哪些应用场景?06. Spring由哪些模块组成…...
学习python好就业么
Python的普及与数据挖掘、人工智能和数值计算等领域的蓬勃发展相关,但同时也与普遍编程需求的增加有关。 Python作为人工智能的头号语言,一方面会吸引大量计划从事人工智能的人来学习,另一方面自然也带动了网络上对这门“新语言”的关注和讨…...
瑞幸咖啡的最终目标并不是做国内市场大哥
出品 | 何玺 排版 | 叶媛 日前,瑞幸咖啡发布2022年第四季度及全年财报。数据显示,在刚刚过去的2022年,瑞幸咖啡首次实现了营收超百亿,门店规模也超越老对手星巴克,成为了国内第一连锁咖啡品牌。 那么,瑞幸…...
GPT 模型介绍 | GPT3 / GPT3.5 + Flask | Github源码链接
1. 模型介绍 Chatgpt 使用与 InstructGPT相同的方法,使用来自人类反馈的强化学习 (RLHF) 来训练该模型,但数据收集设置略有不同。我们使用监督微调训练了一个初始模型:人类 AI 训练员提供对话,他们在对话中扮演双方——用户和 AI…...

蓝桥杯入门即劝退(二十六)组合问题(回溯算法)
-----持续更新Spring入门系列文章----- 如果你也喜欢Java和算法,欢迎订阅专栏共同学习交流! 你的点赞、关注、评论、是我创作的动力! -------希望我的文章对你有所帮助-------- 专栏:蓝桥杯系列 一、题目描述 给定两个整数 n …...

现代卷积神经网络(ResNet)
专栏:神经网络复现目录 本章介绍的是现代神经网络的结构和复现,包括深度卷积神经网络(AlexNet),VGG,NiN,GoogleNet,残差网络(ResNet),稠密连接网络…...
PTA:L1-019 谁先倒、L1-020 帅到没朋友、L1-021 重要的话说三遍(C++)
目录 L1-019 谁先倒 问题描述: L1-020 帅到没朋友 问题描述: 实现代码(只过了部分): L1-021 重要的话说三遍 问题描述: 实现代码: 无解析 L1-019 谁先倒 问题描述: 划拳是…...
STL常见容器之set/multiset、map/multimap
set/multiset—集合容器 特点 所有元素都会在插入时自动被排序 本质 set/multiset属于关联式容器,底层结构是二叉树实现 set和multiset区别 set不可以插入重复数据,而multiset可以set插入数据的同时会返回插入结果,表示插入是否成功multiset…...
ThreadLocal 实现原理
每个 Thread 中都存储着一个成员变量:ThreadLocalMap /** InheritableThreadLocal values pertaining to this thread. This map is* maintained by the InheritableThreadLocal class.*/ThreadLocal.ThreadLocalMap inheritableThreadLocals null; ThreadLocal 本…...

BUUCTF [羊城杯 2020]easyre 题解
一.查壳 64位无壳 二.主函数逻辑 可以得知flag长度为38,然后进行三次加密 第一次加密是base64加密,得到code1 第二次加密是将code1拆成四段赋给code2 第三次加密是将code2内的数字和字母移3位,其他字符不变 str2保存的是最终的加密字符 三.encode_one_base64 看到主函数…...

网络协议(十二):HTTPS(SSL/TLS、TLS1.2的连接)
网络协议系列文章 网络协议(一):基本概念、计算机之间的连接方式 网络协议(二):MAC地址、IP地址、子网掩码、子网和超网 网络协议(三):路由器原理及数据包传输过程 网络协议(四):网络分类、ISP、上网方式、公网私网、NAT 网络…...
九九乘法表--课后程序(Python程序开发案例教程-黑马程序员编著-第3章-课后作业)
实例9:九九乘法表 乘法口诀是中国古代筹算中进行乘法、除法、开方等运算的基本计算规则,沿用至今已有两千多年。古代的乘法口诀与现在使用的乘法口诀顺序相反,自上而下从“九九八十一”开始到“一一如一”为止,因此,古…...

在超算上安装文件树命令tree
超算平台使用的centos系统没有内置tree命令,需要通过源码安装。记录安装流程如下。 1. 下载源码包 下载链接如下: http://mama.indstate.edu/users/ice/tree/ 选择“Download the latest version” 如本文下载了源码包“tree-2.1.0.tgz”. 2. 源码包…...

论文投稿指南——中文核心期刊推荐(经济管理)
【前言】 🚀 想发论文怎么办?手把手教你论文如何投稿!那么,首先要搞懂投稿目标——论文期刊 🎄 在期刊论文的分布中,存在一种普遍现象:即对于某一特定的学科或专业来说,少数期刊所含…...

在vue中如果computed属性是一个异步操作怎么办?
在计算属性中使用异步方法时,可以使用async/await来处理异步操作。由于计算属性是基于它们的依赖缓存的,所以我们需要使用一个返回Promise的异步方法来确保计算属性能够正常运行。 下面是一个简单的示例,演示如何在计算属性中使用异步方法&am…...

SRP合批问题
1)SRP合批问题 2)多个Base相机渲染到同一个渲染目标,移动平台花屏的问题 3)粒子系统对GPU Instancing的支持 4)如何修改URP下场景和UI分辨率分离(不需要改颜色空间) 这是第327篇UWA技术知识分…...

蓝牙5.1低功耗SOC 私有协议2.4GHz芯片HS6621
HS6621CxC是一个优化功耗真正芯片系统(SOC)解决方案,适用于蓝牙低功耗和私有的2.4GHz应用场景。它集成了一个高性能、小功率的射频收发器,具有蓝牙基带和丰富的外围IO扩展。还集成了电源管理,以提供高效的电源管理。 …...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...

Linux 下 DMA 内存映射浅析
序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存,但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程,可以参考这篇文章,我觉得写的非常…...

Linux入门课的思维导图
耗时两周,终于把慕课网上的Linux的基础入门课实操、总结完了! 第一次以Blog的形式做学习记录,过程很有意思,但也很耗时。 课程时长5h,涉及到很多专有名词,要去逐个查找,以前接触过的概念因为时…...