当前位置: 首页 > news >正文

数据结构——二叉树链式结构的实现(上)

二叉树概念

再看二叉树基本操作前,再回顾下二叉树的概念,

二叉树是:

1. 空树

2. 非空:根节点,根节点的左子树、根节点的右子树组成的。

从概念中可以看出,二叉树定义是递归式的 

二叉树构成:根 左子树 右子树构成的。

前序遍历是 :根 左子树 右子树

中序遍历是 :左子树 根 右子树

后序遍历是:左子树 右子树 根

根据上面的插图 前序遍历应该是: 1 2 3 N N N 4 5 N N 6 N N

那么你能试着说出中序和后序吗?

中序和后序如下图所示,你看你写对了吗?

我们学习普通链式二叉树的增删查改是没有意义的,因为我们现在学习普通链式二叉树是为了以后的搜索二叉树和AVL 红黑树打基础的,还有就是很多二叉树的题,都是出在普通链式二叉树结构。

这是一个普通的搜索二叉树,二叉树的左子树比根小,右子树比根大

如果搜索二叉树走中序遍历,就是个有序二叉树

二叉树的构建

 在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。(注意:下述代码并不是创建二叉树的方式 )

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
typedef struct BinaryTree
{struct BinaryTree* _left;struct BinaryTree* _right;int val;
}BTNode;BTNode* buynode(int x)
{BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->val = x;newnode->_left = NULL;newnode->_right = NULL;return newnode;
}
int main()
{BTNode* newnode1 = buynode(1);BTNode* newnode2 = buynode(2);BTNode* newnode3 = buynode(3);BTNode* newnode4 = buynode(4);BTNode* newnode5 = buynode(5);BTNode* newnode6 = buynode(6);newnode1->_left = newnode2;newnode2->_left = newnode3;newnode1->_right = newnode4;newnode4->_left = newnode5;newnode4->_right = newnode6;return 0;
}

二叉树的遍历 

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

前序遍历

void PreOrder(BTNode* root)
{if (root == NULL){printf(" NULL ");return;}printf("%d ", root->val);PreOrder(root->_left);PreOrder(root->_right);
}

是不是觉得很简单?我们先运行下结果

跟我们之前预测的一模一样,为了更好的了解前序遍历,我画一下递归图。

 

中序遍历

就是把代码换个顺序就变成了中序遍历,为了深刻理解递归过程,建议像上面一样,自己画个递归过程理解。

void InOrder(BTNode* root)
{if (root == NULL){printf(" NULL ");return;}InOrder(root->_left);printf("%d ", root->val);InOrder(root->_right);
}

运行结果

 

后序遍历

void PostOrder(BTNode* root)
{if (root == NULL){printf(" NULL ");return;}PostOrder(root->_left);PostOrder(root->_right);printf("%d ", root->val);
}

 运行结果

前序 中序 后序遍历结果

求节点个数以及高度等

二叉树的节点个数

很多人可能都是想这么求节点个数的,但其实是错误的方法,因为size是局部变量 出了作用域就销毁了 根本求不出正确节点个数。

那么我们加上static 让它变成静态变量呢?

可以求出正确答案,因为静态变量在静态区,全局变量也在静态区,相当于一个全局变量,出了作用域并不会被销毁,而且只会走一次初始化,因此答案是正确的。

但有一个问题,如果我要再次调用这个函数求节点个数呢?

答案就会是错误的,因为静态变量只会走一次初始化

解决办法也有,就是在前面把size设为全局变量 再次调用时归为0即可 答案还是6,但这种方法太low了。 

正确的求节点个数代码

//节点个数
int Treesize(BTNode* root)
{return root == NULL ? 0 : 1 + Treesize(root->_left) + Treesize(root->_right);
}

 思路:比如学校里面要统计在校人数,校长不可能一个个问每个人+1+1+1......,而是布置任务,给辅导员或者班主任,班主任或者辅导员会布置给班长去统计各班学生个数,班长汇报给辅导员或班主任,班主任或者辅导员汇报给校长,校长最后在汇报结果加上自己,就是学校在校总人数。

二叉树的叶子节点个数

叶子节点就是度为0的节点。

首先要判断根为不为空

再判断根节点的左右结点存不存在即可。

//叶子结点
int Treeleafsize(BTNode* root)
{if (root == NULL){return 0;}if (root->_left == NULL && root->_right == NULL){return 1;}return Treeleafsize(root->_left) + Treeleafsize(root->_right);
}

二叉树第k层的节点个数

//第K层结点个数
int TreeKlevelsize(BTNode* root, int k)
{assert(k > 0);if (root == NULL){return 0;}if (k == 1){return 1;}return TreeKlevelsize(root->_left, k - 1) + TreeKlevelsize(root->_right, k-1);
}

 

完整代码

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<assert.h>
typedef struct BinaryTree
{struct BinaryTree* _left;struct BinaryTree* _right;int val;
}BTNode;BTNode* buynode(int x)
{BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->val = x;newnode->_left = NULL;newnode->_right = NULL;return newnode;
}void PreOrder(BTNode* root)
{if (root == NULL){printf(" NULL ");return;}printf("%d ", root->val);PreOrder(root->_left);PreOrder(root->_right);
}
void InOrder(BTNode* root)
{if (root == NULL){printf(" NULL ");return;}InOrder(root->_left);printf("%d ", root->val);InOrder(root->_right);
}
void PostOrder(BTNode* root)
{if (root == NULL){printf(" NULL ");return;}PostOrder(root->_left);PostOrder(root->_right);printf("%d ", root->val);
}//节点个数
int Treesize(BTNode* root)
{return root == NULL ? 0 : 1 + Treesize(root->_left) + Treesize(root->_right);
}//叶子结点
int Treeleafsize(BTNode* root)
{if (root == NULL){return 0;}if (root->_left == NULL && root->_right == NULL){return 1;}return Treeleafsize(root->_left) + Treeleafsize(root->_right);
}
//第K层结点个数
int TreeKlevelsize(BTNode* root, int k)
{assert(k > 0);if (root == NULL){return 0;}if (k == 1){return 1;}return TreeKlevelsize(root->_left, k - 1) + TreeKlevelsize(root->_right, k-1);
}
int main()
{BTNode* newnode1 = buynode(1);BTNode* newnode2 = buynode(2);BTNode* newnode3 = buynode(3);BTNode* newnode4 = buynode(4);BTNode* newnode5 = buynode(5);BTNode* newnode6 = buynode(6);newnode1->_left = newnode2;newnode2->_left = newnode3;newnode1->_right = newnode4;newnode4->_left = newnode5;newnode4->_right = newnode6;PreOrder(newnode1);printf("\n");InOrder(newnode1);printf("\n");PostOrder(newnode1);printf("\n");printf("Treesize:%d\n", Treesize(newnode1));printf("Treeleafsize:%d\n", Treeleafsize(newnode1));printf(" TreeKlevelsize:%d\n", TreeKlevelsize(newnode1,3));return 0;
}

 

相关文章:

数据结构——二叉树链式结构的实现(上)

二叉树概念 再看二叉树基本操作前&#xff0c;再回顾下二叉树的概念&#xff0c; 二叉树是&#xff1a; 1. 空树 2. 非空&#xff1a;根节点&#xff0c;根节点的左子树、根节点的右子树组成的。 从概念中可以看出&#xff0c;二叉树定义是递归式的 二叉树构成&#xff1…...

数据结构内容概览

0. 绪论 绪论01——复杂度度量 绪论02——复杂度分析 绪论03——递归分析 绪论04——算法分析 绪论05——动态规划 算法设计与优化——前n项和计算 算法设计优化——对于任意非负整数&#xff0c;统计其二进制展开中数位1的总数 算法设计优化——Fibonacci数 算法设计优化——…...

当Linux系统运行时间长了之后,会出现磁盘空间不足提示,需要及时进行清理

Linux系统&#xff08;CentOS 7&#xff09;的磁盘空间不足时&#xff0c;可以采取以下步骤进行清理&#xff1a; 查找并删除大文件&#xff1a; 使用du和find命令可以找到并删除大文件。例如&#xff0c;要查找/目录下大于100MB的文件&#xff0c;可以运行&#xff1a; find /…...

【Flask 系统教程 4】Jinjia2模版和语法

Jinjia2 模板 模板的介绍 Jinja2 是一种现代的、设计优雅的模板引擎&#xff0c;它是 Python 的一部分&#xff0c;由 Armin Ronacher 开发。Jinja2 允许你在 HTML 文档中嵌入 Python 代码&#xff0c;以及使用变量、控制结构和过滤器来动态生成内容。它的语法简洁清晰&#…...

与 Apollo 共创生态:七周年大会心得

与 Apollo 共创生态&#xff1a;七周年大会心得 前言 4月19日&#xff0c;百度Apollo迎来七周年&#xff0c;历经七年的不懈追求与创新&#xff0c;Apollo开放平台已陆续推出了13个版本&#xff0c;汇聚了来自全球170多个国家与地区的16万名开发者及220多家合作伙伴。作为一名…...

『FPGA通信接口』DDR(4)DDR3内存条SODIMMs读写测试

文章目录 前言1.MIG IP核配置2.测试程序3.DDR应用4.传送门 前言 不论是DDR3颗粒还是DDR3内存条&#xff0c;xilinx都是通过MIG IP核实现FPGA与DDR的读写。本文区别于DDR颗粒&#xff0c;记录几个与颗粒配置不同的地方。关于DDR的原理与MIG IP的简介&#xff0c;请查看前面文章&…...

Element UI 快速入门指南

Element UI 快速入门指南 Element UI 是一个基于 Vue.js 的组件库&#xff0c;提供了丰富的 UI 组件和工具&#xff0c;可以帮助开发人员快速构建现代化的 Web 应用程序。本文将介绍如何快速入门使用 Element UI&#xff0c;并展示一些常用的组件和功能。 安装 Element UI 使…...

CentOS常用命令有哪些?

目录 一、CentOS常用命令有哪些&#xff1f; 二、不熟悉命令怎么办&#xff1f; 场景一&#xff1a;如果是文件操作&#xff0c;可以使用FileZilla工具来完成 场景二&#xff1a;安装CentOS桌面 一、CentOS常用命令有哪些&#xff1f; CentOS 系统中有许多常用命令及其用法…...

cmd查看局域网内所有设备ip

说明&#xff1a;最近碰到一个新问题&#xff0c;就是有一个安卓设备&#xff0c;安装了一个app导致死机了&#xff0c;app设置了开机重启&#xff0c;所以&#xff0c;无论重启还是关机&#xff0c;都是进来就白屏&#xff0c; 这可把人愁坏了&#xff0c;直接死循环了 无论…...

5.3作业

这个声明定义了一个名为 s 的数组&#xff0c;数组包含 10 个元素&#xff0c;每个元素都是一个函数指针。(1)C (2)D (3)C (4)DE (5)C8 11 14(1)int IsFull(sequeue *seqn) { return ((seqn->frnt ((seqn->rear 1) % N)) ? 1 : 0); } (2)int IsEmpty(sequ…...

java-Spring-mvc-(请求和响应)

目录 &#x1f4cc;HTTP协议 超文本传输协议 请求 Request 响应 Response &#x1f3a8;请求方法 GET请求 POST请求 &#x1f4cc;HTTP协议 超文本传输协议 HTTP协议是浏览器与服务器通讯的应用层协议&#xff0c;规定了浏览器与服务器之间的交互规则以及交互数据的格式…...

亚马逊测评工作室如何轻松实现高收益,跨境电商揭秘汇率差赚钱术

随着跨境电商在国内市场的持续繁荣&#xff0c;众多电商卖家纷纷将目光投向了这一充满活力的领域。面对国内市场的激烈竞争&#xff0c;许多卖家选择向外拓展&#xff0c;寻求更广阔的发展空间。其中&#xff0c;亚马逊成为了众多卖家的不二选择&#xff0c;毕竟老外的市场还是…...

unity中 UnityWebRequest.Post和 UnityWebRequest uwr = new UnityWebRequest两种方法有什么区别

在Unity中&#xff0c;UnityWebRequest.Post 和 UnityWebRequest uwr new UnityWebRequest(...) 是两种不同的方式来创建和发送HTTP POST请求&#xff0c;但它们之间有一些关键的区别和用法上的差异。 1. UnityWebRequest.Post (静态方法) UnityWebRequest.Post 是一个静态方…...

Java学习-练习试用Java实现求素数

以下是使用Java语言试着编写的求1-100内的素数的程序&#xff1a; public class PrimeNumbers {public static void main(String[] args) {System.out.println("Prime numbers between 1 and 100 are:");for (int i 2; i < 100; i) {if (isPrime(i)) {System.ou…...

最近学习发现一个background-blend-mode,这是CSS的一个新成员吧!这里分享记录一下

介绍 background-blend-mode CSS 属性定义该元素的背景图片&#xff0c;以及背景色如何混合。 混合模式应该按background-image CSS 属性同样的顺序定义。如果混合模式数量与背景图像的数量不相等&#xff0c;它会被截取至相等的数量。在所有的元素中。在SVG&#xff0c;它适…...

虚幻引擎5 Gameplay框架(二)

Gameplay重要类及重要功能使用方法&#xff08;一&#xff09; 配置LOG类及PlayerController的网络机制 探索验证GamePlay重要函数、类的执行顺序与含义 我们定义自己的日志&#xff0c;专门建立一个存放自己日志的类&#xff0c;这个类继承自BlueprintFunctionLibrary 然后…...

云原生Kubernetes: K8S 1.29版本 部署Sonarqube

一、实验 1.环境 &#xff08;1&#xff09;主机 表1 主机 主机架构版本IP备注masterK8S master节点1.29.0192.168.204.8 node1K8S node节点1.29.0192.168.204.9node2K8S node节点1.29.0192.168.204.10已部署Kuboard &#xff08;2&#xff09;master节点查看集群 1&…...

读天才与算法:人脑与AI的数学思维笔记19_深度数学

1. 深度数学 1.1. 组合与选择&#xff0c;是发明新事物的两个不可或缺的条件 1.1.1. 保尔瓦雷里&#xff08;Paul Valry&#xff09; 1.2. 利用以往的数学定理证明过程训练算法&#xff0c;以发现新的定理 1.3. 谷歌设在伦敦的总部整体有一种现代牛津大学的感觉&#xff0c…...

Springboot+Vue项目-基于Java+MySQL的旅游网站系统(附源码+演示视频+LW)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;Java毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计 &…...

Element UI 简介

Element UI是一个基于Vue.js的组件库&#xff0c;提供了一套丰富的可复用的组件&#xff0c;包括按钮、表单、弹框、表格、菜单等等。它的设计风格简洁大方&#xff0c;易于使用&#xff0c;能够帮助开发者快速构建现代化的Web应用。 在Element UI中&#xff0c;有许多常用的组…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么&#xff0c;为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中&#xff0c;我们在使用电子设备时&#xff0c;我们所输入执行的每一条指令最终大多都会作用到硬件上&#xff0c;比如下载一款软件最终会下载到硬盘上&am…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...