当前位置: 首页 > news >正文

预训练模型介绍

一、什么是GPT

GPT 是由人工智能研究实验室 OpenAI 在2022年11月30日发布的全新聊天机器人模型, 一款人工智能技术驱动的自然语言处理工具 它能够通过学习和理解人类的语言来进行对话, 还能根据聊天的上下文进行互动,能完成撰写邮件、视频脚本、文案、翻译、代码等任务

  • 1f42588e82cf423898cc30db87daa44e.png

二、 为什么GPT很火

  • 打开 ChatGPT 聊天框之后只需要在对话框里输入问题,就可以获得答案,能够应对日常对话

  • ChatGPT 以对话方式进行交互,对话格式使 ChatGPT 能够回答后续问题、承认错误、质疑不正确的前提和拒绝不适当的请求

使用 ChatGPT 的示例演示:

  • 假如 “我想对暗恋的女孩写一篇表白信”

d91513eefac541788dcbce21e9e1aac3.png

三、使用Python调用GPT 

首先,要安装openai库

pip install openai

接下来,需要获取一个API密钥(API key),可以在OpenAI官网上注册并获取。然后,使用以下代码调用GPT API:

import openai# 替换为你的API密钥
openai.api_key = "your_api_key"def chat_with_gpt(prompt):response = openai.Completion.create(engine="text-davinci-002",prompt=prompt,max_tokens=1024,n=1,stop=None,temperature=0.5,)return response.choices[0].text.strip()# 示例:向ChatGPT提问
question = "你好,ChatGPT!"
answer = chat_with_gpt(question)
print(answer)

提问二分查找: 

# 功能: 二分查找
# 输入参数: array: 数组, number: 查找数字
# 输出参数: 查询数字在数组中的下标, 如果查询不到返回-1
def binary_search(array, number):# 定义左右指针left = 0right = len(array) - 1 # 二分查找while left <= right:# 求中间下标mid = (left + right) // 2# 如果查询数字小于数组中间的数字, 则查询范围变为左边的数组# 否则查询范围变为右边的数组if number < array[mid]:right = mid - 1elif number > array[mid]:left = mid + 1else:return midreturn -1

四、GPT应用场景

GPT模型的应用场景主要分为以下三大模块:

  • 代码相关: 如程序语言转换, 比如Python转Java、生成程序命令、修复代码Bug、程序代码解释等;
  • 日常生活相关: 如语言翻译;美食制作配方生成;段落关键字提取;餐馆点评;
  • 职业相关: 创作一个短故事;产品广告设计;生成面试问题帮助面试者准备面试

下面我们以日常生活相关的场景, 来实现GPT功能的应用,这里选取一道中国菜: 鱼香肉丝

  • 中国菜“鱼香肉丝”GPT给出的做法

 c97d5635496d4e1292bd70b5c772959e.png

五、GPT背后原理

GPT(Generative Pre-trained Transformer)是一种基于深度学习的语言模型,其核心在于利用大规模的文本数据进行预训练,从而能够生成连贯且符合语法规则的自然语言文本

  • Transformer:是一种基于自注意力机制(Self-Attention)的深度学习模型,特别是在处理序列数据如自然语言处理(NLP)领域表现出色。它由编码器(Encoder)和解码器(Decoder)组成,能够捕捉输入数据中的长距离依赖关系。
  • PyTorch:是一个动态图型的深度学习框架,提供了丰富的工具和API来构建、训练神经网络模型。它以其易用性、灵活性以及良好的社区支持而受到研究者和开发者的青睐。

GPT模型的训练过程包括两个主要阶段:预训练和微调。在预训练阶段,模型通过学习大量文本资料来把握语言的基本规律和模式;在微调阶段,模型则通过特定任务的训练数据进行精细调整,以适应具体的应用场景。具体来说,GPT模型通常使用变换器(Transformer)作为其网络架构的基础,该架构能够有效处理文本序列中词与词之间的复杂依赖关系。 

GPT模型在与人进行对话时,通常需要解决生成合理且连贯的回应和维持对话的深度与多样性这两个关键问题。

当涉及到生成合理且连贯的回应时,ChatGPT需要理解提问者的意图并给出一个确切且相关的回答。

  • 提问:请解释人工智能的定义。
  • GPT回答:人工智能(Artificial Intelligence,简称AI)是指由计算机系统模拟和执行人类智能的能力。它涉及开发能够感知、学习、推理、决策和解决问题的智能机器。人工智能的目标是使计算机能够像人一样思考、理解和适应环境,从而能够执行各种任务,从简单的自动化到复杂的认知任务

六、神经网络语言模型

我们知道的N-gram语言模型是基于统计的语言模型,是一种离散型的语言模型,所以泛化能力差,而且如果随着N的增大,参数空间呈现指数级增长,导致维度灾难微调。

所以人们开始尝试使用神经网络来建立语言模型。

关于神经网络的介绍:神经网络的激活函数-CSDN博客

 

 

相关文章:

预训练模型介绍

一、什么是GPT GPT 是由人工智能研究实验室 OpenAI 在2022年11月30日发布的全新聊天机器人模型, 一款人工智能技术驱动的自然语言处理工具 它能够通过学习和理解人类的语言来进行对话, 还能根据聊天的上下文进行互动,能完成撰写邮件、视频脚本、文案、翻译、代码等任务 二、 为…...

Pandas入门篇(三)-------数据可视化篇3(seaborn篇)(pandas完结撒花!!!)

目录 概述一、语法二、常用单变量绘图1. 直方图&#xff08;histplot&#xff09;2. 核密度预估图&#xff08;kdeplot&#xff09;3. 计数柱状图&#xff08;countplot&#xff09; 三、常用多变量绘图1.散点图(1) scatterplot(2)regplot 散点图拟合回归线(3)jointplot 散点图…...

SpringBoot中阿里OSS简单使用

官方文档:Java跨域设置实现跨域访问_对象存储(OSS)-阿里云帮助中心 1.pom中引入依赖 <dependency><groupId>com.aliyun.oss</groupId><artifactId>aliyun-sdk-oss</artifactId><version>3.15.1</version> </dependency> 如…...

websocket简介

服务端推送消息给浏览器 WebSocket 教程 - 阮一峰的网络日志...

Linux的shell外壳

Shell外壳 在计算机领域&#xff0c;“shell”&#xff08;外壳&#xff09;是指一种用户界面&#xff0c;提供了访问操作系统服务的方式。Shell 是用户与操作系统之间的桥梁&#xff0c;它解释并执行用户输入的命令。 Shell 的主要功能包括&#xff1a; 命令解释&#xff1a…...

支付宝支付流程

第一步前端&#xff1a;点击去结算&#xff0c;前端将商品的信息传递给后端&#xff0c;后端返回一个商品的订单号给到前端&#xff0c;前端将商品的订单号进行存储。 对应的前端代码&#xff1a;然后再跳转到支付页面 // 第一步 点击去结算 然后生成一个订单号 // 将选中的商…...

打招呼得不到回复,跟头像还有关系?

现在很多人有个想法,那就是觉得某些公司是不是为了某些目的才往出发的招聘信息啊,其实他们并不需要招聘新员工。 目录 已读不回? 头像很重要 选择自己的精修照片 已读不回? 很有这种可能,但你细心观察会发现,的确有很多大公司,...

【网络原理】HTTPS 的工作过程

系列文章目录 【网络通信基础】网络中的常见基本概念 【网络编程】网络编程中的基本概念及Java实现UDP、TCP客户端服务器程序&#xff08;万字博文&#xff09; 【网络原理】UDP协议的报文结构 及 校验和字段的错误检测机制&#xff08;CRC算法、MD5算法&#xff09; 【网络…...

Python语言在地球科学中地理、气象、气候变化、水文、生态、传感器等数据可视化到常见数据分析方法的使用

Python是功能强大、免费、开源&#xff0c;实现面向对象的编程语言&#xff0c;Python能够运行在Linux、Windows、Macintosh、AIX操作系统上及不同平台&#xff08;x86和arm&#xff09;&#xff0c;Python简洁的语法和对动态输入的支持&#xff0c;再加上解释性语言的本质&…...

【JVM】class文件格式,JVM加载class文件流程,JVM运行时内存区域,对象分配内存流程

这篇文章本来只是想讲一下class文件格式&#xff0c;讲着讲着越讲越多。JVM这一块吧&#xff0c;知识比较散比较多&#xff0c;如果深研究下去如死扣《深入理解Java虚拟机》&#xff0c;这本书很深很细&#xff0c;全记住是不可能的&#xff0c;其实也没必要。趁这个机会直接把…...

GPU系列(六)-NVIDIA GPU 驱动安装

1. 安装驱动 1.1 查看系统是否识别显卡 lspci | grep -i vga03:00.0 VGA compatible controller: NVIDIA Corporation GP102 [TITAN X] (rev a1) 0a:00.0 VGA compatible controller: Matrox Electronics Systems Ltd. G200eR2 (rev 01) 识别出显卡为 NVIDIA 的 TITAN X。 …...

第十五届蓝桥杯总结

因为本人不是计院的&#xff0c;以后可能也不会打算法类的竞赛了&#xff0c;故作此总结&#xff0c;纪念我四个月的算法学习经历&#xff0c;还算是对算法有了一定的基础&#xff0c;碰运气拿下了湖北b组省二&#xff0c;个人感觉比赛题目没有第十四届难&#xff0c;感觉就是纯…...

Linux驱动开发——(八)Linux异步通知

目录 一、异步通知简介 二、信号处理 2.1 驱动程序中的处理 2.1.1 fasync_struct结构体 2.1.2 fasync操作函数 2.1.3 kill_fasync函数 2.2 应用程序中的处理 三、驱动代码 一、异步通知简介 异步通知的核心就是信号。信号类似于硬件上使用的中断&#xff0c;只不过信号…...

Docker知识点汇总表格总结

Docker容器给我的一个很直观的感受就是将项目以及中间件安装变得比较简单直接&#xff0c;运行维护起来也更方便。之前做的一些微服务项目也是用docker来部署&#xff0c;现在很多开源的项目也流行使用docker来部署&#xff0c;简化了很多手动安装和配置的步骤&#xff0c;将项…...

Golang中实现调用Windows API向指定目标发送ARP请求

简介 Go库中很多实现的arp都是支持osx/linux/bsd之类的&#xff0c; 但几乎没有支持windows的&#xff0c; 也试了一些方式&#xff0c; 目前还是选用调用windows的API&#xff0c; 记录一下这一次windows的API的调用经验。 实现 代码 package main/* #cgo CFLAGS: -I. #cgo …...

这是一个简单的照明材料网站,后续还会更新

1、首页效果图 代码 <!DOCTYPE html> <html><head><meta charset"utf-8" /><title>爱德照明网站首页</title><style>/*外部样式*/charset "utf-8";*{margin: 0;padding: 0;box-sizing: border-box;}a{text-dec…...

【设计模式】之模板方法模式

系列文章目录 【设计模式】之策略模式 【设计模式】之责任链模式 文章目录 系列文章目录 前言 一、什么是模板方法模式 定义 角色 二、为什么要使用模板方法模式 优点 缺点 三、案例 普通案例 模拟Servlet过程案例 总结 前言 今天给大家介绍23种设计模式中的模板方法模式&a…...

【系统架构师】-选择题(十一)

1、紧耦合多机系统一般通过&#xff08;共享内存&#xff09;实现多机间的通信。对称多处理器结构&#xff08;SMP&#xff09;属于&#xff08; 紧耦合&#xff09;系统。 松耦合多机系统又称间接耦合系统,—般是通过通道或通信线路实现计算机间的互连。 2、采用微内核的OS结构…...

前端开发攻略---介绍HTML中的<dialog>标签,浏览器的原生弹框。

1、演示 2、介绍 <dialog> 标签用于定义对话框&#xff0c;即一个独立的窗口&#xff0c;通常用来显示对话框、提示框、确认框等弹出式内容。在对话框中&#xff0c;可以包含文本、表单元素、按钮等内容&#xff0c;用户可以和这些内容进行交互。 3、兼容性 4、示例代码 …...

让外贸业绩翻倍的销售话术分享

业绩翻三倍的话术&#xff0c;今后无论你遇到挑剔、犹豫、理智的顾客&#xff0c;都能轻松搞定。点赞存起来慢慢看&#xff0c;以免找不到。 与客户有效沟通技巧5的20句金句 业绩翻 3 倍&#xff0c;今后无论你遇到挑剔、犹豫、理智的顾客&#xff0c;都能轻松搞定。点赞存起来…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例

目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码&#xff1a;冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代&#xff0c;运营商作为信息通信网络的核心枢纽&#xff0c;承载着海量用户数据与关键业务传输&#xff0c;其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级&#xff0c;传统安全防护体系逐渐暴露出局限性&a…...

Java并发编程实战 Day 11:并发设计模式

【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天&#xff0c;今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案&#xff0c;它们不仅提供了优雅的设计思路&#xff0c;还能显著提升系统的性能…...

ArcGIS Pro+ArcGIS给你的地图加上北回归线!

今天来看ArcGIS Pro和ArcGIS中如何给制作的中国地图或者其他大范围地图加上北回归线。 我们将在ArcGIS Pro和ArcGIS中一同介绍。 1 ArcGIS Pro中设置北回归线 1、在ArcGIS Pro中初步设置好经纬格网等&#xff0c;设置经线、纬线都以10间隔显示。 2、需要插入背会归线&#xf…...