当前位置: 首页 > news >正文

map、set底层封装模拟实现(红黑树)

文章目录

    • 一、红黑树
      • 1.1红黑树的规则:
      • 1.2红黑树的插入操作
        • 1.2.1不需要旋转(如果叔叔存在且为红,这里的C表示孩子,P表示父亲,U表示叔叔,G表示祖父),包含四种情况,无论孩子在哪里,都是只需要改变叔叔和父亲的颜色为黑,祖父为红,然后向上继续走,C = G
        • 1.2.2需要旋转(左旋,右旋,左右双旋,右左双旋),叔叔不存在或者为黑
      • 1.2红黑树的插入代码
      • 1.3红黑树的整体框架
    • 二、map、set的底层封装
      • 2.1set的底层封装
      • 2.2map的底层封装
      • 2.3红黑树的底层封装

一、红黑树

相较于前面的AVL树,红黑树的优势是:旋转次数减少,效率提高了,同时还保留了AVL树的查找优势

1.1红黑树的规则:

1.每个节点不是红色就是黑色
2.红色节点的孩子一定是黑色节点
3.不能有连续的红色节点
4.每条路径(走到空为止)上的黑色节点数量相同
5.最短路径<=最长路径<=2
最短路径(当某条路径只有黑色节点,而另一条路径红色节点数量和黑色节点相同,那么最长路径就是最短路路径的两倍)

1.2红黑树的插入操作

1.2.1不需要旋转(如果叔叔存在且为红,这里的C表示孩子,P表示父亲,U表示叔叔,G表示祖父),包含四种情况,无论孩子在哪里,都是只需要改变叔叔和父亲的颜色为黑,祖父为红,然后向上继续走,C = G

在这里插入图片描述

1.2.2需要旋转(左旋,右旋,左右双旋,右左双旋),叔叔不存在或者为黑

右旋的情况(这里省略了C,P,U所连的节点)

在这里插入图片描述
左右双旋的情况(这里省略了C,P,U所连的节点)
在这里插入图片描述
下面两种情况省略

1.2红黑树的插入代码

	bool Insert(const pair<K, V>& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if (data.first > cur->_data.first){parent = cur;cur = cur->_right;}else if (data.first < cur->_data.first){parent = cur;cur = cur->_left;}elsereturn false;}cur = new Node(data);if (parent->_data.first > cur->_data.first)parent->_left = cur;elseparent->_right = cur;cur->_parent = parent;//判断父亲是否为红,为黑就不管while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;if (uncle && uncle->_col == RED)//叔叔存在且为红{uncle->_col = parent->_col = BLACK;grandfather->_col = RED;cur = grandfather;//继续向上处理parent = cur->_parent;}else{if (cur == parent->_left){//叔叔为黑或者叔叔不存在RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateL(parent);RotateR(grandfather);cur->_col = BLACK;parent->_col = RED;}break;}}else{Node* uncle = grandfather->_left;if (uncle && uncle->_col == RED){uncle->_col = parent->_col = BLACK;grandfather->_col = RED;cur = grandfather;//继续向上处理parent = cur->_parent;}else{if (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;Node* ppnode = parent->_parent;subR->_left = parent;parent->_parent = subR;if (ppnode == nullptr){_root = subR;_root->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}
}void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* ppnode = parent->_parent;subL->_right = parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}
}

1.3红黑树的整体框架

#pragma once
#include<iostream>
#include<assert.h>
using namespace std;//颜色定义
enum color
{RED,BLACK
};template<class K,class V>
struct RBTreeNode
{typedef RBTreeNode<K, V> Node;pair<K, V> _data;Node* _left;Node* _right;Node* _parent;color _col;//构造函数RBTreeNode(const pair<K, V>& data):_left(nullptr), _right(nullptr), _parent(nullptr), _col(RED), _data(data){}
};template<class K,class V>
class RBTree
{
public:typedef RBTreeNode<K, V> Node;bool Insert(const pair<K, V>& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if (data.first > cur->_data.first){parent = cur;cur = cur->_right;}else if (data.first < cur->_data.first){parent = cur;cur = cur->_left;}elsereturn false;}cur = new Node(data);if (parent->_data.first > cur->_data.first)parent->_left = cur;elseparent->_right = cur;cur->_parent = parent;//判断父亲是否为红,为黑就不管while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;if (uncle && uncle->_col == RED)//叔叔存在且为红{uncle->_col = parent->_col = BLACK;grandfather->_col = RED;cur = grandfather;//继续向上处理parent = cur->_parent;}else{if (cur == parent->_left){//叔叔为黑或者叔叔不存在RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateL(parent);RotateR(grandfather);cur->_col = BLACK;parent->_col = RED;}break;}}else{Node* uncle = grandfather->_left;if (uncle && uncle->_col == RED){uncle->_col = parent->_col = BLACK;grandfather->_col = RED;cur = grandfather;//继续向上处理parent = cur->_parent;}else{if (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void Inorder(){_Inorder(_root);}private:void _Inorder(Node* root){if (root == nullptr)return;_Inorder(root->_left);cout << root->_data.first << endl;_Inorder(root->_right);}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;Node* ppnode = parent->_parent;subR->_left = parent;parent->_parent = subR;if (ppnode == nullptr){_root = subR;_root->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* ppnode = parent->_parent;subL->_right = parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}}Node* _root = nullptr;
};

二、map、set的底层封装

这里我们需要加上迭代器和仿函数(为了套用同一个红黑树的模版)
map有两个模版参数、set只有一个模版参数,因此我们需要加一个仿函数来确定是map还是set

2.1set的底层封装

namespace SF
{//仿函数template<class K>class set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:typedef typename RBTree<K,const K, SetKeyOfT>::iterator iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}bool insert(const K& key){return _t.Insert(key);}private:RBTree<K,const K, SetKeyOfT> _t;};
}

2.2map的底层封装

namespace SF
{template<class K,class V> class map{struct MapKeyOfT{const K& operator()(const pair<K,V>& kv){return kv.first;}};public:typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}bool insert(const pair<K,V>& data){return _t.Insert(data);}private:RBTree<K, pair<const K, V>, MapKeyOfT> _t;};
}

2.3红黑树的底层封装

#pragma once
#include<vector>enum Colour
{RED,BLACK
};template<class T>
struct RBTreeNode
{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Colour _col;T _data;RBTreeNode(const T& data):_left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _col(RED){}
};template<class T>
struct RBTreeIterator
{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T> Self;Node* _node;RBTreeIterator(Node* node):_node(node){}T& operator*(){return _node->_data;}T* operator->(){return &_node->_data;}Self& operator++(){if (_node->_right){// 右子树的中序第一个(最左节点)Node* subLeft = _node->_right;while (subLeft->_left){subLeft = subLeft->_left;}_node = subLeft;}else{// 祖先里面孩子是父亲左的那个Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}Self& operator--(){// return *this;}bool operator!=(const Self& s){return _node != s._node;}bool operator== (const Self & s){return _node == s._node;}
};// set->RBTree<K, K, SetKeyOfT>
// map->RBTree<K, pair<K, V>, MapKeyOfT>// KeyOfT仿函数 取出T对象中的key
template<class K, class T, class KeyOfT>
class RBTree
{typedef RBTreeNode<T> Node;
public:typedef RBTreeIterator<T> iterator;iterator begin(){Node* subLeft = _root;while (subLeft && subLeft->_left){subLeft = subLeft->_left;}return iterator(subLeft);}iterator end(){return iterator(nullptr);}bool Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return true;}KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(data); // 红色的if (kot(parent->_data) < kot(data)){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色if (cur == parent->_left){//       g//    p    u// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//       g//    p     u//      cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{Node* uncle = grandfather->_left;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}}private:Node* _root = nullptr;
};

相关文章:

map、set底层封装模拟实现(红黑树)

文章目录 一、红黑树1.1红黑树的规则&#xff1a;1.2红黑树的插入操作1.2.1不需要旋转&#xff08;如果叔叔存在且为红,这里的C表示孩子&#xff0c;P表示父亲&#xff0c;U表示叔叔&#xff0c;G表示祖父&#xff09;&#xff0c;包含四种情况&#xff0c;无论孩子在哪里&…...

PHP8.2-xlswriter 扩展

https://pecl.php.net/package/xlswriter ### 进入/root/ cd ~ ### 下载扩展 wget https://pecl.php.net/get/xlswriter-1.5.5.tgz ### 解压扩展 tar -zxvf xlswriter-1.5.5.tgz ### 进入扩展目录 cd xlswriter-1.5.5 ### 查找对应php版本的phpize find / -name phpi…...

imx6ull开发板设置SD卡启动,SD卡中烧写uboot,kernel,设备树,根文件系统fs

IMX6ULL ARM Linux开发板SD卡启动&#xff0c;SD卡的分区与分区格式化创建_sd制作分区-CSDN博客...

2024年第七届可再生能源与环境工程国际会议(REEE 2024)即将召开!

2024年第七届可再生能源与环境工程国际会议&#xff08;REEE 2024&#xff09;将于2024 年8月28-30日在法国南特举行。共绘绿色未来&#xff0c;全球同频共振&#xff01;REEE 2024将汇聚全球可再生能源与环境工程领域的专家学者和业界精英&#xff0c;共同探讨行业发展的前沿技…...

【华为】NAT的分类和实验配置

【华为】NAT的分类和实验配置 NAT产生的技术背景IP地址分类NAT技术原理NAT分类静态NAT动态NATNAPTEasy IP&#xff08;PAT&#xff09;NAT Server 配置拓扑静态NAT测试抓包 动态NAT测试抓包 NAPT测试抓包 PAT测试抓包 NAT Server检测抓包 PC1PC2服务器 NAT产生的技术背景 随着…...

拉普拉斯丨独家冠名2024年度ATPV技术分论坛,助力产业科技持续创新

为了进一步促进行业技术交流&#xff0c;推进光伏行业发展及标准建设的进程&#xff0c;针对高效电池&#xff0c;领跑组件&#xff0c;新产品认证及应用等技术专题及国内外光伏标准的最新进程&#xff0c;由中国绿色供应链联盟光伏专委会&#xff08;ECOPV&#xff09;指导的2…...

LangChain入门教程 - 使用代理Agent

对于大模型&#xff0c;比如某些场景&#xff0c;需要数学计算&#xff0c;或者需要从某些网站获取参考资料&#xff0c;就必须使用专门的代理来完成任务。这里我们使用langchain提供的数学工具来实现一个最简单的例子&#xff0c;下一篇我们会讲如何自己实现代理。 首先创建一…...

windows驱动开发-内核编程技术汇总(五)

使用安全字符串函数 和应用层不一样的是&#xff0c;windows内核完全使用Unicode字符串&#xff0c;许多支持AsciiC的windowsAPI&#xff0c;是在应用层完成项Unicode的切换的。许多系统安全问题是由缓冲区处理不善和生成的缓冲区溢出引起的。 糟糕的缓冲区处理通常与字符串操…...

Java中的optional类是啥和例子

Optional 是 Java 8 引入的一个容器对象&#xff0c;用于表示值存在或不存在。这是一个可以为 null 的容器对象&#xff0c;但使用 Optional 比直接使用 null 更安全&#xff0c;因为 Optional 类提供了许多有用的方法&#xff0c;以便更优雅地处理可能存在或不存在的值。 使用…...

AI大模型探索之路-训练篇16:大语言模型预训练-微调技术之LoRA

系列篇章&#x1f4a5; AI大模型探索之路-训练篇1&#xff1a;大语言模型微调基础认知 AI大模型探索之路-训练篇2&#xff1a;大语言模型预训练基础认知 AI大模型探索之路-训练篇3&#xff1a;大语言模型全景解读 AI大模型探索之路-训练篇4&#xff1a;大语言模型训练数据集概…...

mysql事务锁排查

-- mysql show full PROCESSLIST; -- 查看哪些表在锁。 show open tables where IN_use>0; -- 正在执行的事务&#xff1a; SELECT * FROM information_schema.INNODB_TRX;-- 8.0之前 查看正在锁的事务 select * from information_schema.innodb_locks;-- 查看等待锁的事务 …...

ChatGPT变懒原因:正在给自己放寒假!已被网友测出

ChatGPT近期偷懒严重&#xff0c;有了一种听起来很离谱的解释&#xff1a; 模仿人类&#xff0c;自己给自己放寒假了&#xff5e; 有测试为证&#xff0c;网友Rob Lynch用GPT-4 turbo API设置了两个系统提示&#xff1a; 一个告诉它现在是5月&#xff0c;另一个告诉它现在是1…...

C#标签设计打印软件开发

1、新建自定义C#控件项目Custom using System; using System.Collections.Generic; using System.Text;namespace CustomControls {public class CommonSettings{/// <summary>/// 把像素换算成毫米/// </summary>/// <param name="Pixel">多少像素…...

Springboot+vue+小程序+基于微信小程序的在线学习平台

一、项目介绍    基于Spring BootVue小程序的在线学习平台从实际情况出发&#xff0c;结合当前年轻人的学习环境喜好来开发。基于Spring BootVue小程序的在线学习平台在语言上使用Java语言进行开发&#xff0c;在数据库存储方面使用的MySQL数据库&#xff0c;开发工具是IDEA。…...

正点原子[第二期]Linux之ARM(MX6U)裸机篇学习笔记-13-按键实验

前言&#xff1a; 本文是根据哔哩哔哩网站上“正点原子[第二期]Linux之ARM&#xff08;MX6U&#xff09;裸机篇”视频的学习笔记&#xff0c;在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。…...

ubuntu与redhat的不同之处

华子目录 什么是ubuntu概述 ubuntu版本简介桌面版服务器版 安装部署部署后的设置设置root密码关闭防火墙启用允许root进行ssh登录更改apt源安装所需软件 安装nginx安装apache网络配置Netplan概述配置详解配置文件DHCP静态IP设置设置 软件安装方法apt安装软件作用常用命令配置ap…...

三岁孩童被家养大型犬咬伤 额部撕脱伤达10公分

近期&#xff0c;一名被家养大型犬咬伤了面部的3岁小朋友&#xff0c;在被家人紧急送来西安国际医学中心医院&#xff0c;通过24小时急诊门诊简单救治后&#xff0c;转至整形外科&#xff0c;由主治医师李世龙为他实施了清创及缝合手术。 “患者额部撕脱伤面积约为10公分&…...

@click=“handleClick()“不会传递默认事件参数

当你使用click"handleClick()"这种形式绑定事件处理器时&#xff0c;Vue会将它视为一个函数调用&#xff0c;而不是一个事件监听器。在这种情况下&#xff0c;Vue不会自动传递原生事件对象作为默认参数。 如果你想让Vue自动传递原生事件对象作为默认参数&#xff0c…...

KVM安装Ubuntu24.04简要坑点以及优点

本机环境是ubuntu22.04的环境&#xff0c;然后是8核16线程 ssd是500的 目前对于虚拟机的选择&#xff0c;感觉kvm确实会更加流畅&#xff0c;最重要的一点是简洁&#xff0c;然后实际安装效果也比较的好&#xff0c;如果对于速度方面希望快一点&#xff0c;并且流畅一点的话这…...

QT_day1

#include "mywidget.h"MyWidget::MyWidget(QWidget *parent): QWidget(parent) {//修改窗口标题this->setWindowTitle("4.6.0");//修改窗口图标this->setWindowIcon(QIcon("C:\\Users\\zj\\Desktop\\yuanshen\\icon"));//修改窗口大小this…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...