python:机器学习特征优选
作者:CSDN @ _养乐多_
在Python中进行机器学习特征选择的方法有很多种。以下是一些常用的方法:
- 过滤法(Filter Methods):通过统计方法或者相关性分析来评估每个特征的重要性,然后选择最相关的特征。常用的过滤方法包括相关系数、方差分析等。
- 包装法(Wrapper Methods):使用特定的机器学习算法来评估不同特征子集的性能,例如递归特征消除(Recursive Feature Elimination,RFE)。
- 嵌入法(Embedded Methods):在训练过程中直接考虑特征选择,例如使用Lasso回归和决策树等算法,这些算法可以自动选择最重要的特征。
- 其他方法:主成分分析(Principal Component Analysis,PCA),基于模型的特征选择(Model-Based Feature Selection)等。
本文将介绍在 Python 中进行机器学习特征选择的方法和代码。包括过滤法(Filter Methods)、包装法(Wrapper Methods)、嵌入法(Embedded Methods)和其他方法。
文章目录
- 一、特征数据
- 1.1 将用于分析的数据从GEE下载到本地
- 1.2 从其他方法获取
- 二、读取数据
- 三、过滤法
- 四、包装法
- 五、嵌入法
- 六、其他方法
一、特征数据
特征数据的格式如下图所示,其中红框中的一列是标签,其余列是特征变量。
1.1 将用于分析的数据从GEE下载到本地
-
参考博客《GEE:将分类特征和标签提取到样本点,并以(csv/shp格式)下载到本地》。
-
如果需要坐标信息参考博客《GEE:为什么在机器学习分类或回归时,提取特征变量后的样本点下载到本地时,数据为空且缺少坐标?》。
-
如果只选择下载指定的列,请参考博客《GEE:如何在下载CSV文件时去除不想要的属性列》。
1.2 从其他方法获取
如果是遥感数据的特征,你可以从GEE上或者ArcGIS上对特征影像进行提取值到点操作,然后把矢量数据的属性表格保存为csv格式,以便进行本文后续操作。
如果是非遥感数据,也就可以手动制作特征变量csv文件。
二、读取数据
import pandas as pd# 从CSV文件读取数据
data = pd.read_csv('your_data.csv')# 通过列名获取目标变量y和其余所有列为特征变量X
y = data['landcover'] # 替换'landcover'为目标变量的列名
X = data.drop(columns=['landcover']) # 删除目标变量列后,剩余的所有列作为特征变量X
三、过滤法
参考博客《python:机器学习特征优选(过滤法)》。
四、包装法
参考博客《python:机器学习特征优选(包装法)》。
五、嵌入法
参考博客《python:机器学习特征优选(嵌入法)》。
六、其他方法
参考博客《python:机器学习特征优选(主成分分析法)》。
相关文章:
python:机器学习特征优选
作者:CSDN _养乐多_ 在Python中进行机器学习特征选择的方法有很多种。以下是一些常用的方法: 过滤法(Filter Methods):通过统计方法或者相关性分析来评估每个特征的重要性,然后选择最相关的特征。常用的…...
花一个月时间为 vue3 重制了 vue-styled-components
花一个月时间为 vue3 重制了 vue-styled-components 前言 styled-components 在 React 是一个超级热门的 css in js 工具库。其实 styled-components 也有 Vue 版本(vue-styled-components),可惜的是只支持 Vue2,并且该项目已有…...
API接口调用|京东API接口|淘宝API接口
什么是电商API接口: 电商API接口是电商服务平台对外提供的一种接口服务,允许第三方开发者通过编程方式与电商系统进行数据交互和功能调用。 这些接口提供了一种标准化的方法来获取、更新或处理电商平台上的商品信息、订单状态、用户数据、支付信息、物流…...
pgsql和mysql比较
pgsql相对于mysql的优势主要体现在以下几个方面: 稳定性和可靠性:PostgreSQL的稳定性极强,即使在崩溃、断电等灾难场景下也能表现出很好的抗打击能力。相比之下,很多MySQL用户都遇到过Server级的数据库丢失的情况。此外ÿ…...
【太赫兹偏振保持亚波长波导链路功率预算分析】
在进行太赫兹(Terahertz,THz)偏振保持亚波长波导链路的功率预算分析时,我们需要考虑多个因素,包括波导的传输损耗、耦合损耗、偏振保持性能、以及可能存在的其他系统损耗。以下是一个基本的分析框架: 传输…...
json-server的安装和使用
json-server介绍 json-server是可以把本地当做服务器,然后axios向本地区发送请求,并且不会出现跨域的问题,若是等不及后端数据,可以用这个模拟假数据 json-server安装及使用 【json-server网址】https://www.npmjs.com/package/…...
Unity射击游戏开发教程:(10)创建主界面
主界面开发 玩游戏时,主菜单是事后才想到要做的。实际上几乎每个游戏都有一个主界面。如果你点击打开游戏并立即开始游戏,你会感到非常惊讶。本文将讨论如何创建带有启动新游戏的交互式按钮的主界面/主菜单。 主菜单将是一个全新的场景。我们将添加一个 UI 图像元素,并在图像…...
Microsoft 365 for Mac v16.84 office365全套办公软件
Microsoft 365 for Mac是一款功能丰富的办公软件套件,为Mac用户提供了丰富的功能和工具,提高了工作效率和协作能力。Microsoft 365 for Mac是一款专为Mac用户设计的订阅式办公软件套件,旨在提高生产力和效率。 Microsoft 365 for Mac v16.84正…...
交易复盘-20240507
仅用于记录当天的市场情况,用于统计交易策略的适用情况,以便程序回测 短线核心:不参与任何级别的调整,采用龙空龙模式 一支股票 10%的时候可以操作, 90%的时间适合空仓等待 蔚蓝生物 (5)|[9:25]|[36187万]|4.86 百合花…...
面试题: malloc与new的区别
malloc, free是C语言中的库函数, new, delete是C中的运算符new自动计算分配内存的大小,malloc需要手动计算分配内存的大小new返回对象类型的指针,malloc返回的是void*类型,需要显式类型转换new分配失败抛出异常,malloc…...
欧鹏RHCE 第五次作业
unit5.DNS域名解析服务的部署及优化方案 1. (问答题) 1.配置2台服务器要求如下: a)服务器1: 主机名:dns-master.timinglee.org ip地址: 172.25.254.100 配置好软件仓库 b)服务器2: 主机名&…...
数仓分层——ODS、DW、ADS
一、什么是数仓分层 数据仓库分层是一种组织和管理数据仓库的结构化方法,它将数据仓库划分为不同的层次或级别,每个层次具有特定的功能和目的。这种分层方法有助于管理数据仓库中的数据流程、数据处理和数据访问,并提供一种清晰的结构来支持…...
计算机视觉——OpenCV Otsu阈值法原理及实现
算法简介 Otsu阈值法,也被称为大津算法,是一种在图像处理中广泛使用的自动阈值分割技术。这种方法由日本学者大津展之于1979年提出,旨在根据图像的灰度直方图来自动选择最佳全局阈值。Otsu阈值法的核心思想是最小化类内方差或最大化类间方差…...
个人IP打造孵化运营产业链商业计划书
【干货资料持续更新,以防走丢】 个人IP打造孵化运营产业链商业计划书 部分资料预览 资料部分是网络整理,仅供学习参考。 PPT共90页(完整资料包含以下内容) 目录 个人IP运营方案: 1. 个人IP定位与构建 1.1 人格画像构…...
R语言:卡方检验
χ2检验(Chi-Square Test)是一种用于检验分类变量之间是否存在相关性的统计方法。χ2检验的原理基于观察到的频数与期望频数之间的偏差来判断分类变量之间是否存在显著的关联。 χ2检验的原理可以概括为以下几个步骤: 建立假…...
基于51单片机的电子钟秒表LCD1602仿真设计( proteus仿真+程序+设计报告+原理图+讲解视频)
基于51单片机的电子钟秒表LCD1602仿真设计( proteus仿真程序设计报告原理图讲解视频) 这里写目录标题 1. 主要功能:2. 讲解视频:3. 仿真4. 程序代码5. 设计报告6. 原理图7. 设计资料内容清单&&下载链接 仿真图proteus7.8及以上 程序…...
latex参考文献引用网址,不显示网址问题
以引用UCI数据集为例 1、加入宏包 \usepackage{url} 2、在参考文献bib文件中加入网址文献 misc{UCI, author {{D. Dua, E. Karra Taniskidou}}, year {2024}, title {UCI Machine Learning Repository}, howpublished {\url{http://archive.ics.uci.edu/ml}} } 完成&#x…...
详细分析Mybatis与MybatisPlus中分页查询的差异(附Demo)
目录 前言1. Mybatis2. MybatisPlus3. 实战 前言 更多的知识点推荐阅读: 【Java项目】实战CRUD的功能整理(持续更新)java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全) 本章节主要以Demo为例ÿ…...
nginx--tcp负载均衡
mysql负载均衡 安装mysql yum install -y mariadb-server systemctl start mariadb systemctl enable mariadb ss -ntl创建数据库并授权 MariaDB [(none)]> create database wordpress; Query OK, 1 row affected (0.00 sec)MariaDB [(none)]> grant all privileges o…...
20240506 深度学习高级技术点
1.基于BN层剪枝 基于Batch Normalization (BN)层进行剪枝是一种常用的模型压缩方法,特别是在卷积神经网络(CNNs)中。BN层在训练期间用于加速收敛和提高模型的泛化能力,而在剪枝过程中,BN层提供的统计信息(特别是均值(mean)和方差…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...
