HI3516CV610
一、总体介绍
HI3516CV610是一颗应用在安防市场的IPC SoC,在开放操作系统、新一代视频编解码标准网络安全和隐私保护、人工智能方面引领行业发展,主要面向室内外场景下的枪机、球机、半球机、海螺机、枪球一体机、双目长短焦机等产品形态,打造极具竞争力的方案与产品。
二、关键特性
- 4K@20,6M@30分辨率
- 双目实时接入,支撑枪球一体机等双目机型
- 1T 算力 NPU,Transformer 特性加速,大模型端侧部署
- SVAC3.0编码标准,压缩率提升20%
- 智能编码 2.0,像素升级,存储不加量,4MP30 产品一天存储 5GB
- 32 倍曝光比宽动态,商铺/大堂逆光更清
- 低照场景,清渐度、运动拖尾、人脸、车牌效果升级
- 15 米拾音,3~5 米对讲,家庭场景哭声检测
- AOV 低功耗方案
- OpenHarmony 系统与生态:媒体子系统增强组件,图形子系统硬件加速,抗干扰低廷时VTP 网络传输协议,支持分布式能力,芯片解决方案提前预认证
说明
根据功能不同,将Hi3516CV610分为00B/10B/20B/00S/20S型号
三、主要特点
处理器内核
- 支持 ARM Cortex-A7 MP2
- 时钟速率 950MHZ
- 支持32KB -Cache、32KB D-Cache、128KBL2 cache
- 支持 Neon 和 FPU
智能引擎
- 神经网络处理器 NPU
- 支持1Tops运算性能
- 支持业界上百种主流算法,支撑客户快速商用
- 支持Transformer特性加速,内置专属多模态大模型
- 工具支撑模型高效生产和进化
- 内置人脸人形车形检测/包裹检测/宠物检测等算法
- IVE2.5 升级算子,支持运动侦测,周界防范跟踪,透视变换,视频诊断及多种智能分析应用
AI ISP 处理
- 支持 ISP 基础功能
- 支持动态坏点矫正
- 支持3A(AE/AWB/AF)功能,参数用户可调节
- 支持镜头阴影校正
- 支持高动态范围
- 支持两帧WDR融合
- 支持Advanced Local Tone Mapping
- 支持强光抑制和背光补偿
- 清淅度与降噪
- 支持去固定模式噪声(FPN)
- 运动区域效果增强算法
- 支持时域和空域降噪
- 支持多级运动检测
四、型号配置差异
10B
最大性能:5M@30
最大分辨率:2880*1620
编码协议:H.265/H.264
最大编码能力:5M+D1
DDR:内置DDR2 1333Mbps 512Mb
eMMC:eMMC 4.5 4线
封装:QFN*9 0.35mm
20B
最大性能:4K@20/6M@30
最大分辨率:3840*2160
编码协议:H.265/H.264
最大编码能力:6M+720P
DDR:内置DDR3/3L 2133Mbps 1Gb
eMMC:eMMC 4.5 4线
封装:QFN*9 0.35mm
20S
最大性能:4K@20/6M@30
最大分辨率:3840*2160
编码协议:SVAC3.0/H.265/H.264
最大编码能力:6M+720P
DDR:内置DDR3/3L 2133Mbps 1Gb
eMMC:eMMC 4.5 4线
封装:QFN*9 0.35mm
00B
最大性能:4K@20/6M@30
最大分辨率:3840*2160
编码协议:H.265/H.264
最大编码能力:6M+720P
DDR:外置DDR3/3L 2133Mbps 最大4Gb
eMMC:eMMC 5.0 8线
封装:TFBGA12*13.3 0.65mm
00S
最大性能:4K@20/6M@30
最大分辨率:3840*2160
编码协议:SVAC3.0/H.265/H.264
最大编码能力:6M+720P
DDR:外置DDR3/3L 2133Mbps 最大4Gb
eMMC:eMMC 5.0 8线
封装:TFBGA12*13.3 0.65mm
相关文章:
HI3516CV610
一、总体介绍 HI3516CV610是一颗应用在安防市场的IPC SoC,在开放操作系统、新一代视频编解码标准网络安全和隐私保护、人工智能方面引领行业发展,主要面向室内外场景下的枪机、球机、半球机、海螺机、枪球一体机、双目长短焦机等产品形态,打…...
ansible内置主机变量及魔法变量
目录 概述实践代码执行效果 概述 简单实用版本 实践 代码 --- - name: Get IP Addresshosts: allgather_facts: notasks:- name: Get IP Addressansible.builtin.setup:register: host_ip- name: Print IP Addressansible.builtin.debug:msg: "The IP Address of {{ a…...
设计模式一
单例模式(Singleton Pattern)是一种常用的软件设计模式,旨在确保一个类只有一个实例,并提供一个全局访问点。单例模式常用于控制资源密集型对象的创建,如数据库连接池、线程池等,以避免资源浪费。 单例模式…...
MySQL中JOIN连接的实现算法
目录 嵌套循环算法(NLJ) 简单嵌套循环(SNLJ) 索引嵌套循环(INLJ) 块嵌套循环(BNLJ) 三种算法比较 哈希连接算法(Hash Join) 注意事项: 工…...
[力扣题解] 216. 组合总和 III
题目:216. 组合总和 III 思路 回溯法 代码 class Solution { private:vector<vector<int>> result;vector<int> path;public:void function(int k, int n, int startindex, int sum){int i;// 剪枝// 超过了, 不用找了;if(sum > n){return…...
Spring Security Oauth2 JWT 添加额外信息
目录 一、问题描述 二、实现步骤 1、自定义TokenEnhancer 2、配置授权服务器 3、自定义UserDetails的User类 三、参考文档 一、问题描述 Oauth2里默认生成的JWT信息并没有用户信息,在认证授权后一般会返回这一部分信息,我对此进行了改造。 Oauth…...
蜜蜂收卡系统 加油卡充值卡礼品卡自定义回收系统源码 前后端开源uniapp可打包app
本文来自:蜜蜂收卡系统 加油卡充值卡礼品卡自定义回收系统源码 前后端开源uniapp可打包app - 源码1688 卡券绿色循环计划—— 一项旨在构建卡券价值再利用生态的社会责任感项目。在当前数字化消费日益普及的背景下,大量礼品卡、优惠券因各种原因未能有效…...
三星硬盘好还是西数硬盘好?硬盘数据丢失怎么找回
在数字化时代,硬盘作为数据存储的核心组件,其品质与性能直接关系到用户的数据安全与使用体验。在众多硬盘品牌中,三星与西数无疑是两个备受关注的名字。那么,究竟是三星硬盘更胜一筹,还是西数硬盘更受用户青睐…...
企业微信hook接口协议,ipad协议http,设置是否自动同意
设置是否自动同意 参数名必选类型说明uuid是String每个实例的唯一标识,根据uuid操作具体企业微信 请求示例 {"uuid":"bc4800492083fdec4c1a7e5c94","state":1 //1 是需要验证同意(需要手动点击同意) 0关闭验证…...
自动化测试的成本高效果差,那么自动化测试的意义在哪呢?
有人问:自动化测试的成本高效果差,那么自动化测试的意义在哪呢? 我觉得这个问题带有很强的误导性,是典型的逻辑陷阱之一。“自动化测试的成本高效果差”是真的吗?当然不是。而且我始终相信,回答问题的最…...
h5页面用js判断机型是安卓还是ios,判断有app安装没app跳转应用商店app stroe或者安卓应用商店
用vue3写的wep页面。亲测好使。 疑惑: 微信跳转和浏览器跳转不一样,需要控制定时器的时间,android在没下载的情况下点击没反应,ios在没下载的情况下会跳404,就是定时器2000,不知道有没有别的办法࿰…...
算法人生(17):从“课程学习”到“逐步暴露心理疗法”
课程学习(Curriculum Learning)是一种机器学习里常用的策略,它的灵感来源于人类学习方式:学习从简单的概念开始,逐步过渡到更复杂的问题。它通过模仿教育领域中课程安排的思想,设计了一系列有序的任务或数据…...
C++仿函数周边及包装器
我最近开了几个专栏,诚信互三! > |||《算法专栏》::刷题教程来自网站《代码随想录》。||| > |||《C专栏》::记录我学习C的经历,看完你一定会有收获。||| > |||《Linux专栏》࿱…...
改进灰狼算法优化随机森林回归预测
灰狼算法(Grey Wolf Optimization,GWO)是一种基于自然界灰狼行为的启发式优化算法,在2014年被提出。该算法模仿了灰狼群体中不同等级的灰狼间的优势竞争和合作行为,通过不断搜索最优解来解决复杂的优化问题。 灰狼算法…...
Hadoop生态系统的核心组件探索
理解大数据和Hadoop的基本概念 当我们谈论“大数据”时,我们指的是那些因其体积、速度或多样性而难以使用传统数据处理软件有效管理的数据集。大数据可以来自多种来源,如社交媒体、传感器、视频监控、交易记录等,通常包含了TB(太…...
命令行方式将mysql数据库迁移到达梦数据库(全步骤)
因项目需求,需要将mysql数据库转换为国产达梦数据库,但由于安全问题,正式环境只能用命令行方式连接,下列是操作全步骤 目录 一、操作逻辑二、操作步骤1、本地安装达梦相关工具2、将服务器mysql导出到本地a) 服务器命令行导出mysql…...
旅游系列之:庐山美景
旅游系列之:庐山美景 一、路线二、住宿二、庐山美景 一、路线 庐山北门乘坐大巴上山,住在上山的酒店东线大巴游览三叠泉,不需要乘坐缆车,步行上下三叠泉即可,线路很短 二、住宿 长江宾馆庐山分部 二、庐山美景...
杭州恒生面试,社招,3年经验
你好,我是田哥 一位朋友节前去恒生面试,其实面试问题大部分都是八股文,但由于自己平时工作比较忙,完全没有时间没有精力去看八股文,导致面试结果不太理想,HR说节后通知面试结果(估计是凉了&…...
python virtualenv 创建虚拟环境指定python版本,pip 从指定地址下载某个包
一、安装 pip install virtualenv是python3 的话 换成 pip3 如果下载过慢可以从国内链接下载 如下从阿里云下载 pip3 install -i https://mirrors.aliyun.com/pypi/simple virtualenv二、创建指定python版本的虚拟环境 virtualenv venv --pythonpython3.12这里的venv 为创…...
open feign支持调用form-data的接口
增加 consumes {MediaType.MULTIPART_FORM_DATA_VALUE}) 示例 PostMapping(value "/ocr", consumes {MediaType.MULTIPART_FORM_DATA_VALUE})DataResponse ocr(RequestPart("file") MultipartFile multipartFile,RequestPart("fileType") Str…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
