当前位置: 首页 > news >正文

【使用ChatGPT的API之前】OpenAI API提供的可用模型

文章目录

  • 一. ChatGPT基本概念
  • 二. OpenAI API提供的可用模型
    • 1. InstructGPT
    • 2. ChatGPT
    • 3. GPT-4
  • 三. 在OpenAI Playground中使用GPT模型-ing

在使用GPT-4和ChatGPT的API集成到Python应用程序之前,我们先了解ChatGPT的基本概念,与OpenAI API提供的可用模型。

 

一. ChatGPT基本概念

提示词(prompt)不仅适用于OpenAI API,而且是所有LLM的入口点

简单地说,提示词就是用户发送给模型的输入文本,用于指导模型执行特定任务。对于GPT-4和ChatGPT背后的模型,提示词具有聊天格式,输入消息和输出消息存储在列表中。

 

标记(token)是词或词的一部分

据粗略估计,100个标记大约相当于75个英语单词。对OpenAI模型的请求是根据所使用的标记数量来定价的,也就是说,调用API的成本取决于输入文本和输出文本的长度。

在这里插入图片描述

 

二. OpenAI API提供的可用模型

OpenAI提供了多个专为不同任务设计的模型,每个模型都有自己的功能和定价。

通过OpenAI API,你可以使用OpenAI开发的多个模型。这些模型可通过API作为服务使用,这意味着OpenAI在远程服务器上运行模型,开发人员只需向其发送查询请求即可。

需要注意的是,这些模型是专有的,你不能根据自己的需求直接修改模型的代码。但是正如后文所述,你可以通过OpenAI API在特定数据上微调其中的一些模型。

 

1. InstructGPT

这个模型系列可以处理许多单轮文本补全任务。

  • text-ada-001模型只能处理简单的文本补全任务,但它也是GPT-3系列中速度最快、价格最便宜的模型。
  • text-babbage-001模型和text-curie-001模型稍微强大一些,但也更昂贵。
  • text-davinci-003模型可以出色地执行所有文本补全任务,但它也是GPT-3系列中最昂贵的。

 

2. ChatGPT

ChatGPT背后的模型是gpt-3.5-turbo,其聊天格式旨在进行多轮对话。

当然它也可用于没有对话的单轮任务。

  • 在单轮任务中,gpt-3.5-turbo的性能与text-davinci-003相当。由于gpt-3.5-turbo的价格只有text-davinci-003的十分之一,而且两者性能相当,因此建议默认使用它来进行单轮任务。
  • gpt-3.5-turbo模型的上下文窗口大小约为4000个标记,这意味着它可以接收约4000个标记作为输入。

OpenAI还提供了另一个模型,名为gpt-3.5-turbo-16k。它具有与标准的gpt-3.5-turbo模型相同的功能,但上下文窗口大小是后者的4倍。

 

3. GPT-4

这是迄今为止OpenAI发布的最大的模型。由于在广泛的文本和图像多模态语料库上进行了训练,因此它精通许多领域。GPT-4能够准确地遵循复杂的自然语言指令并解决难题。它可用于聊天任务和单轮任务,并具有相当高的准确性。

OpenAI提供了两个GPT-4模型:

  • gpt-4的上下文窗口大小为8192个标记,
  • gpt-4-32k的上下文窗口大小为32768个标记。32768个标记大约相当于24576个英语单词,即大约40页的上下文。

开发人员通常希望LLM版本具有良好的稳定性和可见性,希望针对相同的输入给出相同的回答。为此,OpenAI提供了这些模型的静态快照版本。在我们撰写本书之时,上述模型最新的静态快照版本分别是gpt-3.5-turbo-0613、gpt-3.5-turbo-16k-0613、gpt-4-0613和gpt-4-32k-0613。

OpenAI已宣布在2024年提供GPT-3.5 Turbo和GPT-4的微调功能。

 

三. 在OpenAI Playground中使用GPT模型-ing

相关文章:

【使用ChatGPT的API之前】OpenAI API提供的可用模型

文章目录 一. ChatGPT基本概念二. OpenAI API提供的可用模型1. InstructGPT2. ChatGPT3. GPT-4 三. 在OpenAI Playground中使用GPT模型-ing 在使用GPT-4和ChatGPT的API集成到Python应用程序之前,我们先了解ChatGPT的基本概念,与OpenAI API提供的可用模型…...

【C语言】模拟实现深入了解:字符串函数

🔥引言 本篇将模拟实现字符串函数,通过底层了解更多相关细节 🌈个人主页:是店小二呀 🌈C语言笔记专栏:C语言笔记 🌈C笔记专栏: C笔记 🌈喜欢的诗句:无人扶我青云志 我自…...

钩子函数onMounted定义了太多访问MySQL的操作 导致数据库异常

先放几种后端遇到的异常,多数和数据库有关 pymysql.err.InternalError: Packet sequence number wrong - got 102 expected 1 127.0.0.1 - - [09/May/2024 17:49:37] "GET /monitorLastTenList HTTP/1.1" 500 AttributeError: NoneType object has no at…...

Excel文件解析---超大Excel文件读写

1.使用POI写入 当我们想在Excel文件中写入100w条数据时,使用XSSFWorkbook进行写入时会发现,只有将100w条数据全部加载到内存后才会用write()方法统一写入,效率很低,所以我们引入了SXXFWorkbook进行超大Excel文件读写。 通过设置 …...

TypeScript基础:类型系统介绍

TypeScript基础:类型系统介绍 引言 TypeScript,作为JavaScript的一个超集,引入了类型系统,这为开发大型应用程序带来了诸多好处。本文将介绍TypeScript类型系统的基础知识,帮助初学者理解其概念和用法。 基础知识 …...

【Unity】Unity项目转抖音小游戏(一) 项目转换

UnityWEBGL转抖音小游戏流程 业务需求,开始接触一下抖音小游戏相关的内容,开发过程中记录一下流程。 相关参考: 抖音文档:https://developer.open-douyin.com/docs/resource/zh-CN/mini-game/develop/guide/game-engine/rd-to-SC…...

element-ui 中修改loading加载样式

element-ui 中的 loading 加载功能,默认是全屏加载效果 设置局部,需要自定义样式或者修改样式,方法如下: import { Loading } from element-uiVue.prototype.$baseLoading (text) > {let loadingloading Loading.service({…...

QT登录界面,(页面的切换)

以登陆界面为例,(QDialog) 1.主界面先构造login 的对话框类 int main(int argc, char *argv[]) {QApplication a(argc, argv);//先显示Login的界面Study_Login_Dialog login;............ }2.Login的类,可以用自定义的信号&#…...

计算机毕业设计 | vue+springboot汽车销售管理系统(附源码)

1,项目介绍 本项目基于spring boot以及Vue开发,前端实现基于PanJiaChen所提供的开源后台项目vue-element-admin改造。 针对汽车销售提供客户信息、车辆信息、订单信息、销售人员管理、财务报表等功能,提供经理和销售两种角色进行管理。 2&…...

一款开源的原神工具箱,专为现代化 Windows 平台设计,旨在改善桌面端玩家的游戏体验

Snap.Hutao 胡桃工具箱是一款以 MIT 协议开源的原神工具箱,专为现代化 Windows 平台设计,旨在改善桌面端玩家的游戏体验。通过将既有的官方资源与开发团队设计的全新功能相结合,提供了一套完整且实用的工具集,且无需依赖任何移动设…...

python日常消费数据占比分析总结年消费方向

欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一.前言 整体消费情况 消费趋势 特定领域消费数据...

MySQL变量的浮点数问题处理

schooldb库——utf8字符集——utf8_general_ci排序规则 先创建库,点击查询再去使用下列DQL。 DQL SET dx3.14,dy3.25; SELECT dxdy; #mysql浮点数计算显示异常,会有很多00000的提示 SET resultdxdy;select result;...

MWeb Pro for Mac:功能强大的Markdown博客编辑器

MWeb Pro for Mac是一款功能强大的Markdown博客编辑器,专为Mac用户设计,提供了一站式的博客写作和发布体验。这款软件不仅支持Markdown语法,还提供了丰富的编辑和排版功能,让用户能够轻松创建出精美的博客内容。 MWeb Pro的即时预…...

基于FPGA实现的HDMI TO MIPI扩展显示器方案

FPGA方案,HDMI IN接收原始HDMI 信号,输出显示到LCD 屏上 客户应用:扩展显示器 主要特性: 1.支持2K以下任意分辨率显示 2.支持OSD 叠加多个图层 3.支持MIPI/EDP/LVDS/RGB屏 4.支持放大缩小匹配屏分辨率 5.零延时,输…...

2024年美国市场亚太游戏品牌数字广告洞察报告

来源:Sensor Tower 美国是全球最大的游戏市场之一,也是亚太游戏品牌出海的重要市场。2023年Q2至2024年Q1,美国市​场广告投放额排名前10的亚太游戏品牌,合计支出 超过7.5亿美元,环比上涨23%。 排名第一的米哈游(miHoY…...

DDD面试题:DDD聚合和表的对应关系是什么 ?(来自蚂蚁面试)

尼恩说在前面: 在40岁老架构师 尼恩的读者交流群(50)中,最近有小伙伴拿到了一线互联网企业如字节、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题: DDD 的外部接口调用,应该放在…...

【华为】路由策略小实验

【华为】软考中级-路由策略实验 实验需求拓扑配置AR1AR2需求1需求2 AR3 检验 实验需求 1、让 R3 可以学到R1的 192.168.10.0/24和192.168.20.0/24的 路由,不能学到192.168.30.0/24。 2、让 R1可以学到 R3 的 172.16.20.0/24和172.16.30.0/24的路由,不能…...

docker安装elasticsearch:7.17.21

docker安装elasticsearch:7.17.21 下载对应版本的docker镜像 docker pull docker.elastic.co/elasticsearch/elasticsearch:7.17.21启动容器 docker run --name elasticsearch-test -p 9200:9200 -p 9300:9300 -e "discovery.typesingle-node" -t docker.elastic.…...

10.Java对象内置结构

文章目录 Java对象内置结构1.Java对象的三个部分1.1.对象头1.2.对象体1.3.对齐字节 2.对象结构中核心字段的作用2.1.MarkWord(标记字)2.2.Class Pointer(类对象指针)2.3.Array Length(数组长度)2.4.对象体2.5.对齐字节 3.Mark Word的结构信息3.1.不同锁状态下的Mark Word字段结…...

【ITK配准】第十五期 基于运动算法的可变形配准样例

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 公众号:VTK忠粉 前言 本文分享ITK配准中的基于运动算法的可变形配准,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U^)ノ~YO 基于运…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络&#xf…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时,需要使用外部低速晶振...

Visual Studio Code 扩展

Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决

问题: pgsql数据库通过备份数据库文件进行还原时,如果表中有自增序列,还原后可能会出现重复的序列,此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”,…...

13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析

LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...