当前位置: 首页 > news >正文

(贪心05) 无重叠区间 划分字母区间 合并区间

一、无重叠区间

力扣第435题

第一种方法:

个人思路:

        按照区间左边界排序,然后从左开始遍历,每遍历到一个区间就要保证该区间之前的集合为不重叠区间(贪心,局部最优解)。

        难点在于如何把新遍历到的区间整合为不重叠,分情况讨论。

代码如下:

class Solution {public int eraseOverlapIntervals(int[][] intervals) {Arrays.sort(intervals, (a, b) -> {if(a[0] == b[0]) return a[1] - b[1];return a[0] - b[0];});int remove = 0;for(int i = 1; i < intervals.length; i++) {if(intervals[i][0] == intervals[i - 1][0]) {if(intervals[i][1] > intervals[i - 1][1]) {intervals[i][1] = intervals[i - 1][1];}remove ++;} else if(intervals[i][0] < intervals[i - 1][1]) {if(intervals[i][1] > intervals[i - 1][1]) {intervals[i][0] = intervals[i - 1][0];intervals[i][1] = intervals[i - 1][1];}remove ++;}}return remove;}
}

时间复杂度:O(nlogn)

空间复杂度:O(1)

第二种方法:

思路:

        统计不重叠区间,最后区间总和减去不重叠区间个数就等于重叠区间个数。

代码如下:

class Solution {public int eraseOverlapIntervals(int[][] intervals) {Arrays.sort(intervals, (a,b)-> {return Integer.compare(a[0],b[0]);});int count = 1;for(int i = 1;i < intervals.length;i++){if(intervals[i][0] < intervals[i-1][1]){intervals[i][1] = Math.min(intervals[i - 1][1], intervals[i][1]);continue;}else{count++;}    }return intervals.length - count;}
}

时间复杂度:O(nlogn)

空间复杂度:O(1)

二、划分字母区间

力扣第763题

思路:

        在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。 

        可以分为如下两步:

  • 统计每一个字符最后出现的位置
  • 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点

代码如下:

class Solution {public List<Integer> partitionLabels(String s) {int[] hash = new int[27];for(int i = 0; i < s.length(); i++) {char c = s.charAt(i);hash[c - 'a'] = i;}List<Integer> list = new ArrayList<>();int left = 0;int right = 0;for(int i = 0; i < s.length(); i++) {right = Math.max(right, hash[s.charAt(i) - 'a']);if(i == right) {list.add(right - left + 1);left = i + 1;}}return list;}
}

时间复杂度:O(n)

空间复杂度:O(1)

三、合并区间

力扣第56题  

代码如下:

class Solution {public int[][] merge(int[][] intervals) {Arrays.sort(intervals, (a, b) -> {if(a[0] == b[0]) return a[1] - b[1];return a[0] - b[0];});List<int[]> list = new ArrayList<>();list.add(intervals[0]);int index = 0;for(int i = 1; i < intervals.length; i++) {if(intervals[i][0] <= list.get(index)[1]) {list.get(index)[1] = Math.max(intervals[i][1], list.get(index)[1]);} else {list.add(intervals[i]);index++;}}return list.toArray(new int[list.size()][]);}
}

时间复杂度:O(nlogn);

空间复杂度:O(1);

相关文章:

(贪心05) 无重叠区间 划分字母区间 合并区间

一、无重叠区间 力扣第435题 第一种方法&#xff1a; 个人思路&#xff1a; 按照区间左边界排序&#xff0c;然后从左开始遍历&#xff0c;每遍历到一个区间就要保证该区间之前的集合为不重叠区间&#xff08;贪心&#xff0c;局部最优解&#xff09;。 难点在于如何把新遍历…...

简单网络管理协议(SNMP)入门

目录 概述 SMI&#xff08;对象命名、数据类型、编码方法&#xff09; 对象命名 数据类型 编码方法 MIB&#xff08;版本、分组、对象定义、变量访问&#xff09; 版本 分组 对象定义 变量访问 SNMP 实现机制与报文分析 协议操作 报文格式 实现机制 验证分析 SN…...

leetcode解题思路分析(一百五十七)1366 - 1372 题

通过投票对团队排名 现在有一个特殊的排名系统&#xff0c;依据参赛团队在投票人心中的次序进行排名&#xff0c;每个投票者都需要按从高到低的顺序对参与排名的所有团队进行排位。 排名规则如下&#xff1a; 参赛团队的排名次序依照其所获「排位第一」的票的多少决定。如果存在…...

药物代谢动力学学习笔记

一、基本概念 二、经典房室模型 三、非线性药物代谢动力学 四、非房室模型 五、药代动力学与药效动力学 六、生物等效性评价 七、生物样品分析方法 基本概念 生物样品&#xff1a;生物机体的全血、血浆、血清、粪便、尿液或其他组织的样品 特异性&#xff0c;specificity&…...

IDEA中git的常用操作(保姆级教学)

IDEA中git的常用操作&#xff08;保姆级教学&#xff09; 以下是git的工作原理&#xff0c;觉得繁琐的可以跳过不看 Workspace&#xff1a;工作区 (平时存放代码的地方) Index / Stage&#xff1a;暂存区&#xff08;用于临时存放存放你的改动&#xff0c;事实上就是一个文件&…...

保研面试408复习 3——操作系统

文章目录 1、操作系统一、进程有哪几种状态&#xff0c;状态之间的转换、二、调度策略a.处理机调度分为三级&#xff1a;b.调度算法 标记文字记忆&#xff0c;加粗文字注意&#xff0c;普通文字理解。 为什么越写越少&#xff1f; 问就是在打瓦。(bushi) 1、操作系统 一、进程…...

【代码随想录37期】Day02 有序数组的平方、长度最小的子数组、螺旋矩阵Ⅱ(施工中)

有序数组的平方 977. 有序数组的平方 - 力扣&#xff08;LeetCode&#xff09; v1.0:直接暴力 4分半做出来&#xff0c;用sort api class Solution { public:vector<int> sortedSquares(vector<int>& nums) {vector<int> result;for(int i 0; i<…...

通俗的理解网关的概念的用途(三):你的数据包是如何到达下一层的

其实&#xff0c;这一章我写不好&#xff0c;因为这其中会涉及到一些计算和一些广播等概念&#xff0c;本人不善于此项。在此略述&#xff0c;可以参考。 每台设备的不同连接在获得有效的IP地址后&#xff0c;会根据IP地址的规则和掩码的规则&#xff0c;在操作系统和交换机&a…...

基于Springboot的校运会管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的校运会管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&a…...

USP技术提升大语言模型的零样本学习能力

大语言模型&#xff08;LLMs&#xff09;在零样本和少样本学习能力上取得了显著进展&#xff0c;这通常通过上下文学习&#xff08;in-context learning, ICL&#xff09;和提示&#xff08;prompting&#xff09;来实现。然而&#xff0c;零样本性能通常较弱&#xff0c;因为缺…...

前端安全防护实战:XSS、CSRF防御与同源策略详解(react 案例)

前端安全防护实战中&#xff0c;主要涉及三个方面&#xff1a;XSS (Cross-Site Scripting) 攻击的防御、CSRF (Cross-Site Request Forgery) 攻击的防御&#xff0c;以及浏览器的同源策略。以下是这三个方面的详细说明&#xff1a; XSS 防御详解 XSS 概述 XSS攻击是一种让攻…...

2024C题生物质和煤共热解问题的研究 详细思路

背景 随着全球能源需求的不断增长和对可再生能源的追求&#xff0c;生物质和煤共热解作为一种潜在的能源转化技术备受关注。生物质是指可再生能源&#xff0c;源自植物和动物的有机物质&#xff0c;而煤则是一种化石燃料。** 在共热解过程中&#xff0c;生物质和煤在高温和缺氧…...

智慧旅游引领未来风尚,科技助力旅行更精彩:科技的力量推动旅游业创新发展,为旅行者带来更加便捷、高效和智能的旅行服务

目录 一、引言 二、智慧旅游的概念与特点 &#xff08;一&#xff09;智慧旅游的概念 &#xff08;二&#xff09;智慧旅游的特点 三、科技推动旅游业创新发展 &#xff08;一&#xff09;大数据技术的应用 &#xff08;二&#xff09;人工智能技术的应用 &#xff08;…...

十.吊打面试官系列-Tomcat优化-通过压测Tomcat调优实战

前言 上一篇文章我们讲解了一下Tomcat底层的结构和执行原理&#xff0c;我们需要重点去掌握的是Tomcat的高内聚低耦合的设计&#xff0c;以及责任链模式&#xff0c;以及Tomcat NIO编程模式&#xff0c;这些是Tomcat比较核心的点&#xff0c;本篇文章我们将对Tomcat的参数做一…...

JVM调优—减少FullGC

背景 最近负责了一个审批流程新项目&#xff0c;带领了几个小伙伴&#xff0c;哼哧哼哧的干了3个月左右&#xff0c;终于在三月底完美上线了&#xff0c;好消息是线上客户用的很丝滑&#xff0c;除了几个非常规的业务提单之外&#xff0c;几乎没有什么大的问题&#xff0c;但是…...

力扣 256. 粉刷房子 LCR 091. 粉刷房子 python AC

动态规划 class Solution:def minCost(self, costs):row, col len(costs), 3dp [[0] * col for _ in range(row 1)]for i in range(1, row 1):for j in range(col):dp[i][j] costs[i - 1][j - 1]if j 0:dp[i][j] min(dp[i - 1][1], dp[i - 1][2])elif j 1:dp[i][j] m…...

C++STL细节,底层实现,面试题04

文章目录 19. STL19.1. 序列容器19.1.1. vector19.1.1.1. 底层实现和特点19.1.1.2. 常用函数19.1.1.3. emplace_back() vs push_back() 19.1.2. array19.1.2.1. 底层实现和特点19.1.2.2. 常用函数 19.1.3. deque19.1.3.1. 底层实现和特点19.1.3.2. 常用函数 19.1.4 list19.1.4.…...

Linux查看Oracle数据库的环境变量

Linux查看Oracle数据库的环境变量 在Linux上查看Oracle数据库的环境变量&#xff0c;通常涉及检查当前shell会话中已设置的环境变量。这些环境变量可能包括ORACLE_HOME、ORACLE_SID、PATH&#xff08;可能包含Oracle二进制文件的路径&#xff09;等。 以下是几种方法来查看这…...

pg数据库学习知识要点分析-1

知识要点1 对象标识OID 在PostgreSQL内部&#xff0c;所有的数据库对象都通过相应的对象标识符&#xff08;object identifier&#xff0c;oid&#xff09;进行管理&#xff0c;这些标识符是无符号的4字节整型。数据库对象与相应oid 之间的关系存储在对应的系统目录中&#xf…...

【Web】CTFSHOW 七夕杯 题解

目录 web签到 easy_calc easy_cmd web签到 CTF中字符长度限制下的命令执行 rce(7字符5字符4字符)汇总_ctf中字符长度限制下的命令执行 5个字符-CSDN博客7长度限制直接梭了 也可以打临时文件RCE import requestsurl "http://4ae13f1e-8e42-4afa-a6a6-1076acd08211.c…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...

【java面试】微服务篇

【java面试】微服务篇 一、总体框架二、Springcloud&#xff08;一&#xff09;Springcloud五大组件&#xff08;二&#xff09;服务注册和发现1、Eureka2、Nacos &#xff08;三&#xff09;负载均衡1、Ribbon负载均衡流程2、Ribbon负载均衡策略3、自定义负载均衡策略4、总结 …...

高效的后台管理系统——可进行二次开发

随着互联网技术的迅猛发展&#xff0c;企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心&#xff0c;成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统&#xff0c;它不仅支持跨平台应用&#xff0c;还能提供丰富…...

生成对抗网络(GAN)损失函数解读

GAN损失函数的形式&#xff1a; 以下是对每个部分的解读&#xff1a; 1. ⁡, ​ &#xff1a;这个部分表示生成器&#xff08;Generator&#xff09;G的目标是最小化损失函数。 &#xff1a;判别器&#xff08;Discriminator&#xff09;D的目标是最大化损失函数。 GAN的训…...