当前位置: 首页 > news >正文

人工智能培训讲师咨询叶梓介绍及智能医疗技术与ChatGPT临床应用三日深度培训提纲

1、授课老师简介

叶梓,上海交通大学计算机专业博士毕业,高级工程师。主研方向:数据挖掘、机器学习、人工智能。历任国内知名上市IT企业的AI技术总监、资深技术专家,市级行业大数据平台技术负责人。

长期负责城市信息化智能平台的建设工作,开展行业数据的智能化应用研发工作,牵头多个省级、市级行业智能化信息系统的建设,主持设计并搭建多个省级、市级行业大数据平台。参与国家级人工智能课题,牵头上海市级人工智能示范应用课题研究。

带领团队在相关行业领域研发多款人工智能创新产品,成功落地多项大数据、人工智能前沿项目,其中信息化智能平台项目曾荣获:“上海市信息技术优秀应用成果奖”。带领团队在参加国际NLP算法大赛,获得Top1%的成绩。参与国家级、省级大数据技术标准的制定,曾获省部级以上的科技创新一等奖。

2、项目经历

上海市城市信息化人工智能项目 项目负责人

  • 研发智能服务系统,包括:元宇宙与虚拟数字人、基于人工智能的内容生成(AIGC)、基于NLP技术的对话系统、基于深度学习的图像识别系统、基于智能推理的行业推荐系统。

相关工作:

作为项目总负责,负责项目管理、产品研发、系统分析、技术指导、算法指导等。

上海市城市智能信息化工程 总工程师

  • 采用大数据技术,建设市级信息平台,完成试点单位接入并采集居民相关信息,实现市级平台档案等服务,并实现所有单位的全面接入。
  • 为解决超量数据的存储与计算的问题,搭建了存储全市数据的云计算平台,并在其上进行了基于大数据的分析和挖掘工作。

相关工作:

作为总工程师,负责技术管理、系统分析、云平台数据存储设计、数据分析与挖掘指导、开发指导。

上海市城市信息化领域智能联网工程 技术经理

  • 建设内容包括:接入单位的联网;智能卡的实现;城市信息化智能平台的升级;科研平台的扩展与升级;建立决策支持系统;评估体系的展示设计;短信平台的实现;违规操作的提醒;协同智能服务平台的实现等。

相关工作:

作为技术经理负责总体架构设计、接口设计、大数据平台设计、AI技术指导等。

3. 主攻方向

具有扎实的数据挖掘、机器学习、深度学习等人工智能理论基础;了解AIGC等技术前沿动态。

精通机器学习、深度学习的理论、模型、算法、调优等;精通算法设计;

熟悉深度学习在自然语言处理、计算机视觉两大核心领域的实用技巧;

15年以上的程序开发经验,熟悉常用程序开发架构,独立完成多个产品级软件的设计与开发。

3. 提纲:

智能医疗技术与ChatGPT临床应用三日深度培训

第一天:人工智能基础与Python编程入门

  • 上午:
    • 人工智能在医疗领域的应用概述
    • Python编程基础
      • 环境搭建、数据类型、流程控制
        • 1Python环境搭建
        • 2Python数据类型
        • 3Python流程控制
        • 4Python函数的应用
        • 5Python面向对象编程 
        • 6Python文件读写和目录操作
        • 7Python异常处理
        • 8Python包和模块
      • 实际案例:Python在医学数据分析中的应用
    • Python医学图像处理基础
      • PyDicom库的安装和基本用法
      • MRIDRCT等影像的读取、解析、显示
      • 实际案例:读取各种Dicom格式的影像
  • 下午:
    • 深度学习PyTorch框架入门
      • 深度学习的基本概念,通用架构
        • 1、深度学习的基本概念
        • 2、深度学习的通用构架
        • 3PyTorch的选型和安装 
      • 梯度下降优化算法
        • 1、损失函数
        • 2、梯度下降优化算法
        • 3、模型的保存和加载
      • 实际案例:使用PyTorch进行医学图像分类
      • 图像分类算法(判断是否病变)
        • 1AlexNet
        • 2VggNet
        • 3ResNet
        • 4EfficientNet
        • 实际案例:深度学习在肺结节分类中的应用

第二天:深度学习与医学影像分析

  • 上午:
    • 深度学习智能影像诊断算法
      • 目标检测算法(检测病变区域)
        • RCNN系列目标检测算法
          • RCNN
          • Fast RCNN
          • Faster RCNN
        • YOLO系列目标检测算法
          • YOLO v5
          • YOLO v8
        • 实际案例:目标检测在血常规分析中的应用
        • 实际案例:YOLO在病变检测中的应用
  • 下午:
    • 图像分割算法(分割病变区域)
      • DeepLab系列语义分割算法
        • DeepLab v1/v2
        • CRF
        • DeepLab v3/v3+
      • 医疗生物领域专用的U-Net分割网络
        • U型弯”结构
        • 保护“边缘”的措施
        • 损失函数
      • 实际案例:U-Net在前列腺肿瘤分割中的应用
      • 实际案例:通过U-Net分割细胞
    • 影像智能诊断项目实战
      • CT智能诊断实战案例
      • MRI智能诊断实战案例

第三天:ChatGPT与医疗大模型应用

  • 上午:
    • ChatGPT等大模型在临床科研中的应用
      • 快速获取医学知识
      • 临床实践研究
        • 辅助生成出院小结
        • 个性化医疗服务
      • 辅助论文编写
      • 实际案例:ChatGPT在医疗咨询中的应用
    • 项目实战:使用llama-factory微调大模型
      • 安装部署
      • 支持的大模型种类
      • 数据集准备
      • 微调策略(PEFTLoRA, QLoRA等)
  • 下午:
    • 大模型助力SCI论文写作及润色
      • 医学文献梳理
      • 论文降重与润色
      • 实际案例:AI在医学论文写作中的应用
    • 项目实战:构建自己的医疗大模型智能问诊平台
      • 技术架构、硬件环境
      • 私有化医疗知识库准备
      • 向量数据库的选择和使用
      • LangChain框架的使用
      • 系统搭建与互动问答

相关文章:

人工智能培训讲师咨询叶梓介绍及智能医疗技术与ChatGPT临床应用三日深度培训提纲

1、授课老师简介 叶梓,上海交通大学计算机专业博士毕业,高级工程师。主研方向:数据挖掘、机器学习、人工智能。历任国内知名上市IT企业的AI技术总监、资深技术专家,市级行业大数据平台技术负责人。 长期负责城市信息化智能平台的…...

HCIP(BGP综合实验)--8

一:实验要求 二:实现过程 (一)配置IP地址: AR1: [AR1]int g0/0/0 [AR1-GigabitEthernet0/0/0]ip add 12.1.1.1 24 [AR1-GigabitEthernet0/0/0]int l0 [AR1-LoopBack0]ip add 172.16.0.1 32 [AR1-LoopBack0]int l1 […...

深入理解C++中的Vector容器:用容器构建高效程序

文章目录 vector介绍vector常用的成员函数有关vector定义的函数vector的迭代器使用vector关于空间操作的成员函数vector的增删查改 总结 vector介绍 在C语言的库中包含有公共数据结构的实现,C的这个部分内容就是众所周知的STL(标准模版库)&a…...

目标检测YOLO实战应用案例100讲-基于深度学习的交通场景多尺度目标检测算法研究与应用(下)

目录 3.2 基于空洞卷积的特征融合模块设计 3.3 改进k-means聚类算法的anchor尺寸优化设计...

react 类组件 和 函数组件 声明周期 对比

React 的类组件和函数组件在生命周期方面存在一些差异。以下是它们之间的对比: 类组件的生命周期 React 类组件的生命周期可以分为三个阶段:挂载、更新和卸载。 1、挂载阶段: constructor():组件实例化时调用,用于…...

智慧变电站守护者:TSINGSEE青犀AI视频智能管理系统引领行业革新

一、方案概述 随着科技的不断进步,人工智能(AI)技术已经深入到各个领域。在变电站安全监控领域,引入AI视频监控智能分析系统,可以实现对站内环境、设备状态的实时监控与智能分析,从而提高变电站的安全运行…...

【Ubuntu20.04安装java-8-openjdk】

1 下载 官网下载链接: https://www.oracle.com/java/technologies/downloads/#java8 下载 最后一行 jdk-8u411-linux-x64.tar.gz,并解压: tar -zxvf jdk-8u411-linux-x64.tar.gz2 环境配置 1、打开~/.bashrc文件 sudo gedit ~/.bashrc2、…...

HTTPS对于网站到底价值几何?

现在HTTPS基本上已经是网站的标配了,很少会遇到单纯使用HTTP的网站。但是十年前这还是另一番景象,当时只有几家大型互联网公司的网站会使用HTTPS,大部分使用的都还是简单的HTTP,这一切是怎么发生的呢? 为什么要把网站…...

Docker私有仓库Harbor

简介 Docker私有仓库Harbor是一个开源的、企业级的Docker registry解决方案,它提供了安全、可靠和高效的容器镜像存储和分发服务。以下是关于Docker私有仓库Harbor的详细介绍: 一、Harbor的特点 基于角色的访问控制(RBAC)&#…...

48. 旋转图像/240. 搜索二维矩阵 II

48. 旋转图像 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 : 输入:matrix [[5,1,9,11],[2,4,…...

wsl安装Xfce桌面并设置系统语言和输入法

一、安装xfce (有相关的依赖都会安装) sudo apt -y install xfce4 二、 安装远程连接组件 sudo apt install xrdp -y 并重新启动 Xrdp 服务: sudo systemctl restart xrdp 本地windows系统中请按 winR 键 呼出运行 在运行中输入 mstsc…...

短信清空了!华为手机短信删除了怎么恢复?

“有没有人知道这是怎么回事呀,原先有一千多条未读一直放着没管,昨天根本没打开短信这个软件,今晚突然发现只剩一条了,是华为手机自动清理了吗!到底该怎么恢复呀?我真崩溃!” 在日常生活中&…...

Linux实现Flappy bird项目

目录 1、项目介绍 2、功能总结 3、前期准备 3.1 Ncurses库 3.2 信号机制 3.2.1 设置信号响应方式 3.2.2 设置定时器 4、代码实现 4.1 头文件引用及变量、函数定义 4.2 主函数 4.3 curses初始化 4.4 设置定时器 4.5 定时器响应函数 4.6 小鸟控制相关函数 4…...

【python量化交易】qteasy使用教程07——创建更加复杂的自定义交易策略

创建更加复杂的自定义交易策略 使用交易策略类,创建更复杂的自定义策略开始前的准备工作本节的目标继承Strategy类,创建一个复杂的多因子选股策略策略和回测参数配置,并开始回测 本节回顾 使用交易策略类,创建更复杂的自定义策略 …...

SpringBoot整合SpringScurity权限控制(菜单权限,按钮权限)以及加上SSH实现安全传输

文章目录 项目地址: 一、md5 与 先进的哈希算法的区别1.1. 安全性问题1.2. 设计目的1.3. 功能特性1.4. 适用性1.5. 总结 二、数据传输安全和数据加密实现:2.1 生成证书:2.2、在springboot中进行集成2.2.1 配置证书:2.2.2. 强制使用…...

力扣每日一题119:杨辉三角||

题目 简单 给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 示例 1: 输入: rowIndex 3 输出: [1,3,3,1]示例 2: 输入: rowIndex 0 输出: [1]示例 3: 输入: rowIndex 1 输出…...

AI语音模型PaddleSpeech踩坑(安装)指南

PaddleSpeech简介 PaddleSpeech 是基于飞桨 PaddlePaddle 的语音方向的开源模型库,用于语音和音频中的各种关键任务的开发,包含大量基于深度学习前沿和有影响力的模型。 PaddleSpeech安装步骤 提示:要找到一个合适的PaddleSpeech版本与pad…...

如何更好地使用Kafka? - 运行监控篇

要确保Kafka在使用过程中的稳定性,需要从kafka在业务中的使用周期进行依次保障。主要可以分为:事先预防(通过规范的使用、开发,预防问题产生)、运行时监控(保障集群稳定,出问题能及时发现&#…...

数据可视化训练第四天(模拟投掷筛子并且统计频次)

投掷一个筛子 import matplotlib.pyplot as plt from random import randint import numpy as npclass Die:"""模拟投掷筛子"""def __init__(self,num_sides6):self.num_sidesnum_sidesdef roll(self):return randint(1,self.num_sides)num1000…...

4.1 编写程序,从键盘接收一个小写字母,然后找出他的前导字符和后续字符,再按顺序显示这三个字符

方法一: 运行效果: 输入B,输出显示ABC;输入A,输出显示AB 思路: 1、通过键盘输入接收一个字母。 2、将输入的字母减去1,得到前导字符,然后输出。 3、将输入的字母加上1,得…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

测试markdown--肇兴

day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...