代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
文章目录
- 代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
- 理论基础
- 一、常规题目
- 二、解题步骤
- 509. 斐波那契数
- 一、动态规划v1
- 二、动态规划v2
- 三、动态规划v3
- 70. 爬楼梯
- 一、动态规划v1
- 二、动态规划v2
- 746. 使用最小花费爬楼梯
- 一、dp v1
- 二、dp v2
理论基础
一、常规题目
二、解题步骤
对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
509. 斐波那契数
题目链接
- 确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]- 确定递推公式
状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];- dp数组如何初始化
题目中把如何初始化也直接给我们了,如下: dp[0] = 0; dp[1] = 1;- 确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的- 打印dp数组
一、动态规划v1
class Solution:def fib(self, n):# 排除 Corner Caseif n == 0:return 0# 创建 dp table dp = [0] * (n + 1)# 初始化 dp 数组dp[0] = 0dp[1] = 1# 遍历顺序: 由前向后。因为后面要用到前面的状态for i in range(2, n + 1):# 确定递归公式/状态转移公式dp[i] = dp[i - 1] + dp[i - 2]# 返回答案return dp[n
二、动态规划v2
class Solution:def fib(self, n):if n<=1:return ndp=[0,1]for i in range(2,n+1):total = dp[0]+dp[1]dp[0]=dp[1]dp[1]=total return total
三、动态规划v3
class Solution:def fib(self, n):if n<=1:return nprev0,prev1 = 0,1for _ in range(2,n+1):cur = prev0 + prev1prev0,prev1 = prev1,curreturn cur
70. 爬楼梯
题目链接
- 确定dp数组以及下标的含义
dp[i]的定义为:爬到第i层楼梯,有dp[i]种方法- 确定递推公式
dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么
状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];- dp数组如何初始化
dp[1] = 1; dp[2] = 2;- 确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的- 打印dp数组
一、动态规划v1
class Solution(object):def climbStairs(self, n):""":type n: int:rtype: int"""dp = [0]*(n+1)if n <=2:return ndp[1]=1dp[2]=2for i in range(3,n+1):dp[i]=dp[i-1]+dp[i-2]return dp[n]
二、动态规划v2
class Solution(object):def climbStairs(self, n):""":type n: int:rtype: int"""dp=[0,1,2]if n <=2:return nfor i in range(3,n+1):total = dp[1]+dp[2]dp[1]=dp[2]dp[2]=totalreturn total
746. 使用最小花费爬楼梯
题目链接
- 确定dp数组以及下标的含义
dp[i]的定义为:到达第i台阶所花费的最少体力为dp[i]- 确定递推公式
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]
状态转移方程 : dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);- dp数组如何初始化
dp[0] = 0; dp[1] = 0;- 确定遍历顺序
因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了- 打印dp数组
一、dp v1
class Solution(object):def minCostClimbingStairs(self, cost):""":type cost: List[int]:rtype: int"""dp = [0] * (len(cost) + 1)dp[0] = 0 # 初始值,表示从起点开始不需要花费体力dp[1] = 0 # 初始值,表示经过第一步不需要花费体力for i in range(2, len(cost) + 1):# 在第i步,可以选择从前一步(i-1)花费体力到达当前步,或者从前两步(i-2)花费体力到达当前步# 选择其中花费体力较小的路径,加上当前步的花费,更新dp数组dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])return dp[len(cost)] # 返回到达楼顶的最小花费
二、dp v2
class Solution(object):def minCostClimbingStairs(self, cost):""":type cost: List[int]:rtype: int"""dp0=0dp1=0for i in range(2,len(cost)+1):dp2=min(dp1+cost[i-1],dp0+cost[i-2])dp0=dp1dp1=dp2return dp2
相关文章:

代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 文章目录 代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯理论基础一、常规题目二、解题步骤…...

CSS拟物按钮
<div class"btn">F</div>.btn {margin: 150px 0 0 150px;display: flex;justify-content: center;align-items: center;width: 100px;height: 100px;background-color: #fff;border-radius: 20px;font-size: 50px;color: #333;/* 禁止选中文本 */user-se…...

websevere服务器从零搭建到上线(三)|IO多路复用小总结和服务器的基础框架
文章目录 epollselect和poll的优缺点epoll的原理以及优势epoll 好的网络服务器设计Reactor模型图解Reactor muduo库的Multiple Reactors模型 epoll select和poll的优缺点 1、单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数…...

解决宝塔Nginx和phpMyAdmin配置端口冲突问题
问题描述 在对基于宝塔面板的 Nginx 配置文件进行端口修改时,我注意到 phpMyAdmin 的端口配置似乎也随之发生了变化! 解决方法 官方建议在处理 Nginx 配置时,应避免直接修改默认的配置文件,以确保系统的稳定性和简化后续的维护…...

光伏EPC管理软件都有哪些功能和作用?
光伏EPC管理软件是用于光伏工程项目管理的综合性工具,它涵盖了从项目策划、设计、采购、施工到运维的各个环节。 1、项目总览 管理所有项目计划,包括项目类型、项目容量等。 调整和优化项目计划,以应对不可预见的情况。 2、施工管理 制定…...

BGP学习一:关于对等体建立和状态组改变
目录 一.BGP基本概念 (1).BGP即是协议也是分类 1.早期EGP 2.BGP满足不同需求 3.BGP区域间传输的优势 (1)安全性——只传递路由信息 (2)跨网段建立邻居 4.BGP总结 5.BGP的应用 (1&#…...

ETL工具kettle(PDI)入门教程,Transform,Mysql->Mysql,Csv->Excel
什么是kettle,kettle的下载,安装和配置:ETL免费工具kettle(PDI),安装和配置-CSDN博客 mysql安装配置:Linux Centos8 Mysql8.3.0安装_linux安装mysql8.3-CSDN博客 1 mysql -> mysql 1.1 mysql CREATE TABLE user_…...
常见地图坐标系间的转换算法JavaScript实现
文章目录 🍉 不同的地图厂商使用不同的坐标系来表示地理位置。以下简述:🍉 前置常量和方法:🍉 BD-09转GCJ-02(百度转谷歌、高德)🍉 GCJ-02转BD-09(谷歌、高德转百度)🍉 WGS84转GCJ-02(WGS84转谷歌、高德)🍉 GCJ-02转WGS84(谷歌、高德转WGS84)🍉 BD-09转wgs84坐…...
基于python的大麦网自动抢票工具的设计与实现
基于python的大麦网自动抢票工具的设计与实现 Design and Implementation of Da Mai Net Ticket Grabbing tool based on Python 完整下载链接:基于python的大麦网自动抢票工具的设计与实现 文章目录 基于python的大麦网自动抢票工具的设计与实现摘要第一章 引言1.1 研究背景…...

2024年5月树莓集团快讯
树莓集团近期快讯 1 园区专场招聘会进校园 国际数字影像产业园联合四川城市职业学院的专场招聘会成功召开,共计提供400余个工作岗位。 2 园区硬件优化再升级 园区硬件优化再升级,智能门禁系统及人脸识别系统下周投入使用。 3 基地短剧合作交流 天府…...

网站localhost和127.0.0.1可以访问,本地ip不可访问解决方案
部署了一个网站, 使用localhost和127.0.0.1加端口号可以访问, 但是使用本机的ip地址加端口号却不行. 原因可能有多种. 可能的原因: 1 首先要确认是否localhost对应的端口是通的(直接网址访问), 以及你无法访问的那个本机ip是否正确(使用ping测试); 2 检查本机的防火…...
Docker Dockerfile如何编写?
Dockerfile 是一个用来构建镜像的文本文件,文本内容包含了一条条构建镜像所需的指令和说明。 1.指令说明 FROM,构建镜像基于哪个镜像 MAINTAINER,镜像维护者姓名或邮箱地址 RUN,构建镜像时运行的指令 CMD,运行容器时执…...
Python数独游戏
数独(Sudoku)是一种逻辑性的数字填充游戏,玩家需要在一个分为九宫的81格网格上填入数字,同时满足每一行、每一列以及每个宫(3x3的子网格)的数字都不重复。 在Python中实现一个数独游戏可以涉及到多个方面&…...

24 | MySQL是怎么保证主备一致的?
MySQL 主备的基本原理 内部流程 备库 B 跟主库 A 之间维持了一个长连接。主库 A 内部有一个线程,专门用于服务备库 B 的这个长连接。一个事务日志同步的完整过程是这样的: 在备库 B 上通过 change master 命令,设置主库 A 的 IP、端口、用户名、密码,以及要从哪个位置开始…...

2.数据类型与变量(java篇)
目录 数据类型与变量 数据类型 变量 整型变量 长整型变量 短整型变量 字节型变量 浮点型变量 双精度浮点型 单精度浮点型 字符型变量 布尔型变量(boolean) 类型转换 自动类型转换(隐式) 强制类型转换(显式) 类型提升 字符串类型 数据类…...
QT设计模式:桥接模式
基本概念 桥接模式是一种结构型设计模式,它将抽象部分与它的实现部分分离,使得它们可以独立地变化,而不会相互影响。 需要实现的结构如下: 抽象部分(Abstraction):定义了抽象类的接口&#x…...

简单粗暴的翻译英文pdf
背景:看书的时候经常遇到英文pdf,没有合适的翻译软件可以快速翻译全书。这里提供一个解决方案。 Step 1 打开英文pdfCTRLA全选文字CTRLC复制打开记事本CTRLV复制保存为data.txt Step 2 写一个C脚本 // ToolPdf2Html.cpp : 此文件包含 "main&quo…...

UDP和TCP协议比较,TOE技术
如今在某些方面TCP超越UDP的主要原因如下 在硬件层面的TOE(TCP Offload Engine)功能,将越来越多的TCP功能卸载到网卡上。它极大地提升了TCP的性能,使其在高吞吐量场景下的表现更为出色。近年TCP的拥塞控制算法实现了显著进步。这些新算法显著提高了TCP在…...
第十三节 huggingface的trainner解读与Demo
文章目录 前言一、trainer和TrainingArguments训练与预测完整Demo1、数据构建2、TrainingArguments构建3、Trainer初始化4、模型训练5、模型推理6、完整demo代码7、完整运行结果二、辅助函数1、yield返回内容2、迭代器中断恢复迭代demo3、yield from结构4、torch.Generator()的…...
GO: json 处理
需要引入"encoding/json"包 json解析到map jsonStr : "{\"a\":\"test\",\"b\":\"testb\"}" var dat map[string]string err : json.Unmarshal([]byte(jsonStr), &dat) if err nil {fmt.Println(dat) }结果…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...

【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...