代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
文章目录
- 代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
- 理论基础
- 一、常规题目
- 二、解题步骤
- 509. 斐波那契数
- 一、动态规划v1
- 二、动态规划v2
- 三、动态规划v3
- 70. 爬楼梯
- 一、动态规划v1
- 二、动态规划v2
- 746. 使用最小花费爬楼梯
- 一、dp v1
- 二、dp v2
理论基础
一、常规题目
二、解题步骤
对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
509. 斐波那契数
题目链接
- 确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]- 确定递推公式
状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];- dp数组如何初始化
题目中把如何初始化也直接给我们了,如下: dp[0] = 0; dp[1] = 1;- 确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的- 打印dp数组
一、动态规划v1
class Solution:def fib(self, n):# 排除 Corner Caseif n == 0:return 0# 创建 dp table dp = [0] * (n + 1)# 初始化 dp 数组dp[0] = 0dp[1] = 1# 遍历顺序: 由前向后。因为后面要用到前面的状态for i in range(2, n + 1):# 确定递归公式/状态转移公式dp[i] = dp[i - 1] + dp[i - 2]# 返回答案return dp[n
二、动态规划v2
class Solution:def fib(self, n):if n<=1:return ndp=[0,1]for i in range(2,n+1):total = dp[0]+dp[1]dp[0]=dp[1]dp[1]=total return total
三、动态规划v3
class Solution:def fib(self, n):if n<=1:return nprev0,prev1 = 0,1for _ in range(2,n+1):cur = prev0 + prev1prev0,prev1 = prev1,curreturn cur
70. 爬楼梯
题目链接
- 确定dp数组以及下标的含义
dp[i]的定义为:爬到第i层楼梯,有dp[i]种方法- 确定递推公式
dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么
状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];- dp数组如何初始化
dp[1] = 1; dp[2] = 2;- 确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的- 打印dp数组
一、动态规划v1
class Solution(object):def climbStairs(self, n):""":type n: int:rtype: int"""dp = [0]*(n+1)if n <=2:return ndp[1]=1dp[2]=2for i in range(3,n+1):dp[i]=dp[i-1]+dp[i-2]return dp[n]
二、动态规划v2
class Solution(object):def climbStairs(self, n):""":type n: int:rtype: int"""dp=[0,1,2]if n <=2:return nfor i in range(3,n+1):total = dp[1]+dp[2]dp[1]=dp[2]dp[2]=totalreturn total
746. 使用最小花费爬楼梯
题目链接
- 确定dp数组以及下标的含义
dp[i]的定义为:到达第i台阶所花费的最少体力为dp[i]- 确定递推公式
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]
状态转移方程 : dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);- dp数组如何初始化
dp[0] = 0; dp[1] = 0;- 确定遍历顺序
因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了- 打印dp数组
一、dp v1
class Solution(object):def minCostClimbingStairs(self, cost):""":type cost: List[int]:rtype: int"""dp = [0] * (len(cost) + 1)dp[0] = 0 # 初始值,表示从起点开始不需要花费体力dp[1] = 0 # 初始值,表示经过第一步不需要花费体力for i in range(2, len(cost) + 1):# 在第i步,可以选择从前一步(i-1)花费体力到达当前步,或者从前两步(i-2)花费体力到达当前步# 选择其中花费体力较小的路径,加上当前步的花费,更新dp数组dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])return dp[len(cost)] # 返回到达楼顶的最小花费
二、dp v2
class Solution(object):def minCostClimbingStairs(self, cost):""":type cost: List[int]:rtype: int"""dp0=0dp1=0for i in range(2,len(cost)+1):dp2=min(dp1+cost[i-1],dp0+cost[i-2])dp0=dp1dp1=dp2return dp2
相关文章:

代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 文章目录 代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯理论基础一、常规题目二、解题步骤…...

CSS拟物按钮
<div class"btn">F</div>.btn {margin: 150px 0 0 150px;display: flex;justify-content: center;align-items: center;width: 100px;height: 100px;background-color: #fff;border-radius: 20px;font-size: 50px;color: #333;/* 禁止选中文本 */user-se…...

websevere服务器从零搭建到上线(三)|IO多路复用小总结和服务器的基础框架
文章目录 epollselect和poll的优缺点epoll的原理以及优势epoll 好的网络服务器设计Reactor模型图解Reactor muduo库的Multiple Reactors模型 epoll select和poll的优缺点 1、单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数…...

解决宝塔Nginx和phpMyAdmin配置端口冲突问题
问题描述 在对基于宝塔面板的 Nginx 配置文件进行端口修改时,我注意到 phpMyAdmin 的端口配置似乎也随之发生了变化! 解决方法 官方建议在处理 Nginx 配置时,应避免直接修改默认的配置文件,以确保系统的稳定性和简化后续的维护…...

光伏EPC管理软件都有哪些功能和作用?
光伏EPC管理软件是用于光伏工程项目管理的综合性工具,它涵盖了从项目策划、设计、采购、施工到运维的各个环节。 1、项目总览 管理所有项目计划,包括项目类型、项目容量等。 调整和优化项目计划,以应对不可预见的情况。 2、施工管理 制定…...

BGP学习一:关于对等体建立和状态组改变
目录 一.BGP基本概念 (1).BGP即是协议也是分类 1.早期EGP 2.BGP满足不同需求 3.BGP区域间传输的优势 (1)安全性——只传递路由信息 (2)跨网段建立邻居 4.BGP总结 5.BGP的应用 (1&#…...

ETL工具kettle(PDI)入门教程,Transform,Mysql->Mysql,Csv->Excel
什么是kettle,kettle的下载,安装和配置:ETL免费工具kettle(PDI),安装和配置-CSDN博客 mysql安装配置:Linux Centos8 Mysql8.3.0安装_linux安装mysql8.3-CSDN博客 1 mysql -> mysql 1.1 mysql CREATE TABLE user_…...
常见地图坐标系间的转换算法JavaScript实现
文章目录 🍉 不同的地图厂商使用不同的坐标系来表示地理位置。以下简述:🍉 前置常量和方法:🍉 BD-09转GCJ-02(百度转谷歌、高德)🍉 GCJ-02转BD-09(谷歌、高德转百度)🍉 WGS84转GCJ-02(WGS84转谷歌、高德)🍉 GCJ-02转WGS84(谷歌、高德转WGS84)🍉 BD-09转wgs84坐…...
基于python的大麦网自动抢票工具的设计与实现
基于python的大麦网自动抢票工具的设计与实现 Design and Implementation of Da Mai Net Ticket Grabbing tool based on Python 完整下载链接:基于python的大麦网自动抢票工具的设计与实现 文章目录 基于python的大麦网自动抢票工具的设计与实现摘要第一章 引言1.1 研究背景…...

2024年5月树莓集团快讯
树莓集团近期快讯 1 园区专场招聘会进校园 国际数字影像产业园联合四川城市职业学院的专场招聘会成功召开,共计提供400余个工作岗位。 2 园区硬件优化再升级 园区硬件优化再升级,智能门禁系统及人脸识别系统下周投入使用。 3 基地短剧合作交流 天府…...

网站localhost和127.0.0.1可以访问,本地ip不可访问解决方案
部署了一个网站, 使用localhost和127.0.0.1加端口号可以访问, 但是使用本机的ip地址加端口号却不行. 原因可能有多种. 可能的原因: 1 首先要确认是否localhost对应的端口是通的(直接网址访问), 以及你无法访问的那个本机ip是否正确(使用ping测试); 2 检查本机的防火…...
Docker Dockerfile如何编写?
Dockerfile 是一个用来构建镜像的文本文件,文本内容包含了一条条构建镜像所需的指令和说明。 1.指令说明 FROM,构建镜像基于哪个镜像 MAINTAINER,镜像维护者姓名或邮箱地址 RUN,构建镜像时运行的指令 CMD,运行容器时执…...
Python数独游戏
数独(Sudoku)是一种逻辑性的数字填充游戏,玩家需要在一个分为九宫的81格网格上填入数字,同时满足每一行、每一列以及每个宫(3x3的子网格)的数字都不重复。 在Python中实现一个数独游戏可以涉及到多个方面&…...

24 | MySQL是怎么保证主备一致的?
MySQL 主备的基本原理 内部流程 备库 B 跟主库 A 之间维持了一个长连接。主库 A 内部有一个线程,专门用于服务备库 B 的这个长连接。一个事务日志同步的完整过程是这样的: 在备库 B 上通过 change master 命令,设置主库 A 的 IP、端口、用户名、密码,以及要从哪个位置开始…...

2.数据类型与变量(java篇)
目录 数据类型与变量 数据类型 变量 整型变量 长整型变量 短整型变量 字节型变量 浮点型变量 双精度浮点型 单精度浮点型 字符型变量 布尔型变量(boolean) 类型转换 自动类型转换(隐式) 强制类型转换(显式) 类型提升 字符串类型 数据类…...
QT设计模式:桥接模式
基本概念 桥接模式是一种结构型设计模式,它将抽象部分与它的实现部分分离,使得它们可以独立地变化,而不会相互影响。 需要实现的结构如下: 抽象部分(Abstraction):定义了抽象类的接口&#x…...

简单粗暴的翻译英文pdf
背景:看书的时候经常遇到英文pdf,没有合适的翻译软件可以快速翻译全书。这里提供一个解决方案。 Step 1 打开英文pdfCTRLA全选文字CTRLC复制打开记事本CTRLV复制保存为data.txt Step 2 写一个C脚本 // ToolPdf2Html.cpp : 此文件包含 "main&quo…...

UDP和TCP协议比较,TOE技术
如今在某些方面TCP超越UDP的主要原因如下 在硬件层面的TOE(TCP Offload Engine)功能,将越来越多的TCP功能卸载到网卡上。它极大地提升了TCP的性能,使其在高吞吐量场景下的表现更为出色。近年TCP的拥塞控制算法实现了显著进步。这些新算法显著提高了TCP在…...
第十三节 huggingface的trainner解读与Demo
文章目录 前言一、trainer和TrainingArguments训练与预测完整Demo1、数据构建2、TrainingArguments构建3、Trainer初始化4、模型训练5、模型推理6、完整demo代码7、完整运行结果二、辅助函数1、yield返回内容2、迭代器中断恢复迭代demo3、yield from结构4、torch.Generator()的…...
GO: json 处理
需要引入"encoding/json"包 json解析到map jsonStr : "{\"a\":\"test\",\"b\":\"testb\"}" var dat map[string]string err : json.Unmarshal([]byte(jsonStr), &dat) if err nil {fmt.Println(dat) }结果…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...