当前位置: 首页 > news >正文

24深圳杯C题18页高质量论文+可执行代码+图表

比赛题目的完整版思路+可执行代码+数据+参考论文都会在第一时间更新上传的,大家可以参考我往期的资料,所有的资料数据以及到最后更新的参考论文都是一次付费后续免费的。注意:(建议先下单占坑,因为随着后续我们更新资料数据的增多,会进行相应价格的提升!!!)

简单麦麦icon-default.png?t=N7T8https://www.jdmm.cc/file/2710546/

18页高质量论文:

问题1:编译并对比结果

  1. 获取不同版本的GCC编译器:首先,需要确保安装了不同版本的GCC编译器。这可以通过下载和安装不同版本的GCC或使用包管理器(如apt, yum等)来实现。
  2. 编译附件1中的程序:使用每个版本的GCC编译器编译附件1中的C++源代码,并确保使用默认编译选项(通常是不带任何额外标志的g++命令)。
  3. 对比编译结果:对比不同版本编译器生成的编译输出(包括警告、错误和生成的代码)以及二进制文件。寻找明显的不同点,比如特定的警告信息、优化级别或生成的机器码差异。

问题2:构建判别函数

  1. 提取特征:从编译结果中提取关键特征,如特定警告信息、编译器的内建版本信息字符串等。
  2. 设计判别逻辑:根据提取的特征,设计判别逻辑。这可能是一个简单的if-else结构,或者是基于规则的匹配系统,甚至是机器学习模型。
  3. 验证判别函数:使用已知版本的GCC编译器生成的编译结果来验证判别函数的准确性。

问题3:应用判别函数

  1. 编译附件2中的程序:使用不同版本的GCC编译器编译附件2中的C++源代码,并收集编译结果。
  2. 应用判别函数:将问题2中构建的判别函数应用于附件2的编译结果,观察其是否能够正确区分不同版本的编译器。
  3. 研究泛化性:比较附件1和附件2的代码,分析哪些编译结果特征是通用的,哪些是特定于某个代码的。这有助于提高判别函数的泛化性。

问题4:提高判别函数性能的建议

  1. 增加特征:考虑从编译输出中提取更多特征,如编译时间、生成文件的大小等。
  2. 使用机器学习:考虑使用机器学习算法来训练一个分类器,根据编译结果自动区分编译器版本。
  3. 优化判别逻辑:对判别逻辑进行优化,减少误判和漏判的情况。
  4. 考虑跨平台兼容性:如果可能的话,使判别函数能够在不同操作系统和硬件平台上运行。

请注意,这个问题需要实际的编译实验和代码分析来得出具体的答案。上述建议提供了一个大致的方向,但具体的实现细节将取决于实际的编译结果和源代码内容。

二、模型假设

为了回答上述问题中关于编译器版本识别的模型假设,我们可以提出以下几个假设,这些假设将作为构建判别函数和模型的基础:

模型假设

  1. 编译器版本与编译结果具有可区分性
    • 不同版本的编译器在编译相同的源代码时,会生成具有显著区别的编译结果。这些区别可能体现在生成的机器码、警告信息、错误信息以及编译日志中的其他方面。
  2. 默认编译选项的一致性
    • 当使用默认编译选项时,同一版本的编译器在不同时间或不同环境下对同一源代码的编译结果应该是稳定且一致的。这意味着我们可以依赖默认编译选项下的编译结果来区分编译器版本。
  3. 编译结果的可提取性
    • 编译过程中产生的信息(如警告、错误、日志输出等)是可以被提取和分析的。这些信息将作为特征用于构建判别函数。
  4. 特征的有效性和可区分性
    • 从编译结果中提取的特征应能有效地代表编译器的版本信息,并且在不同版本的编译器之间应具有明显的区分度。
  5. 模型的泛化性
    • 构建的判别函数或模型应具有一定的泛化能力,即对于新的、未曾在训练数据中出现过的源代码,也能够较准确地判断其编译所使用的编译器版本。
  6. 模型的鲁棒性
    • 模型应能够抵抗一定程度的噪声和干扰,例如由于编译器优化级别的微小变化或源代码的微小修改导致的编译结果变化。

这些假设构成了我们构建编译器版本识别模型的基础。在实际操作中,我们需要通过实际的编译实验和数据分析来验证这些假设的有效性,并根据实际情况对模型进行调整和优化。需要注意的是,这些假设可能不是绝对的,因为它们基于当前对编译器行为和编译过程的理解,而随着编译器技术的不断发展和更新,这些假设可能需要进行相应的调整。

三、符号定义

在构建编译器版本识别模型的过程中,为了更好地描述和表达相关的概念和特征,我们可以为它们定义一些符号。以下是基于之前提出的模型假设的符号定义:

符号定义

  1. 编译器版本
    • (V):表示编译器的版本集合,其中每个元素 (v_i) 代表一个具体的编译器版本(如 GCC 13.2.0)。
  2. 源代码
    • (S):表示源代码的集合,其中每个元素 (s_j) 代表一份特定的源代码文件。
  3. 编译结果
    • (C(v, s)):表示使用版本为 (v) 的编译器编译源代码 (s) 得到的编译结果。这可以是一个包含多种信息的集合,如警告、错误、生成的二进制文件等。
  4. 特征提取函数
    • (F(C)):表示从编译结果 (C) 中提取特征的函数,返回一个特征向量或集合。这些特征可能包括特定的警告信息、编译日志中的关键字、生成的二进制文件的大小和哈希值等。
  5. 判别函数
    • (D(F)):表示根据提取的特征 (F) 判断编译器版本的函数,返回一个版本标签 (v_i \in V)。这个函数可以是基于规则的分类器,也可以是机器学习模型。
  6. 训练数据集
    • (T = {(C_1, v_1), (C_2, v_2), ..., (C_n, v_n)}):表示用于训练判别函数的数据集,其中每个元组包含一份编译结果 (C_k) 和对应的编译器版本标签 (v_k)。
  7. 测试数据集
    • (E = {C_1', C_2', ..., C_m'}):表示用于测试判别函数性能的数据集,包含多份未知版本的编译结果。
  8. 性能度量指标
    • (A):表示判别函数的准确度(Accuracy)。
    • (P):表示判别函数的精确度(Precision)。
    • (R):表示判别函数的召回率(Recall)。
    • (F1):表示判别函数的F1分数(F1 Score),是精确度和召回率的调和平均值。

这些符号定义将有助于我们更清晰地描述和表达编译器版本识别模型中的各个组件和过程。在实际应用中,我们可以根据具体的需求和场景对这些符号进行进一步的细化和扩展。

四、模型建立与求解

1. 通过训练集数据来建立决策数回归模型,得到决策树结构。
2. 通过建立的决策树来计算特征重要性。
3. 将建立的决策树回归模型应用到训练、测试数据,得到模型评估结果。
4. 由于决策树具有随机性,每次运算的结果不一样,若保存本次训练模型,后续可以直接上传数据代入到本次训练模型进行计算预测。
5. 注:决策树无法像传统模型一样得到确定的方程,通常通过测试数据预测精度来对模型进行评价。

保姆级思路如下:

相关文章:

24深圳杯C题18页高质量论文+可执行代码+图表

比赛题目的完整版思路可执行代码数据参考论文都会在第一时间更新上传的,大家可以参考我往期的资料,所有的资料数据以及到最后更新的参考论文都是一次付费后续免费的。注意:(建议先下单占坑,因为随着后续我们更新资料数…...

Midjourney Imagine API 申请及使用

Midjourney Imagine API 申请及使用 申请流程 要使用 Midjourney Imagine API,首先可以到 Midjourney Imagine API 页面点击「Acquire」按钮,获取请求所需要的凭证: 如果你尚未登录或注册,会自动跳转到登录页面邀请您来注册和登…...

电子邮箱是什么?怎么申请一个电子邮箱?

电子邮箱是我们沟通的工具,细分为免费版电子邮箱和付费版电子邮箱。怎么申请一个属于自己的电子邮箱?今天小编就分享一下电子邮箱注册教程,手把手教您注册一个电子邮箱。 一、电子邮箱的定义 电子邮箱,简称邮箱,是一…...

C++ 并发编程指南(11)原子操作 | 11.4、通过内存序实现顺序模型

文章目录 一、通过内存序实现顺序模型1、Relaxed Ordering2、Sequencial Consistent Ordering3、Acquire Release Ordering 前言 前文介绍了六种内存顺序,以及三种内存模型,本文通过代码示例讲解六种内存顺序使用方法,并实现相应的内存模型。…...

【数据结构】栈和队列专题

前言 上篇博客我们讨论了栈和队列的有关结构,本篇博客我们继续来讨论有关栈和队列习题 这些题算是经典了 💓 个人主页:小张同学zkf ⏩ 文章专栏:数据结构 若有问题 评论区见📝 🎉欢迎大家点赞&#x1f44d…...

2024年程序员最应该关注的几件事?

对于程序员而言,技术和行业趋势的演变是持续关注的焦点。以下是几件2024年程序员应该关注的事情: 持续学习新技术:技术领域的快速变化要求程序员不断更新自己的技能集,包括编程语言、框架、工具和最佳实践。 人工智能与机器学习&…...

【初阶数据结构】单链表基础OJ题讲解

前言 📚作者简介:爱编程的小马,正在学习C/C,Linux及MySQL。 📚本文收录与初阶数据结构系列,本专栏主要是针对时间、空间复杂度,顺序表和链表、栈和队列、二叉树以及各类排序算法,持…...

基于Java的俄罗斯方块游戏的设计与实现

关于俄罗斯方块项目源码.zip资源-CSDN文库https://download.csdn.net/download/JW_559/89300281 基于Java的俄罗斯方块游戏的设计与实现 摘 要 俄罗斯方块是一款风靡全球,从一开始到现在都一直经久不衰的电脑、手机、掌上游戏机产品,是一款游戏规则简单…...

Hadoop 3.4.0+HBase2.5.8+ZooKeeper3.8.4+Hive+Sqoop 分布式高可用集群部署安装 大数据系列二

创建服务器,参考 虚拟机创建服务器 节点名字节点IP系统版本master11192.168.50.11centos 8.5slave12192.168.50.12centos 8.5slave13192.168.50.13centos 8.5 1 下载组件 Hadoop:官网地址 Hbase:官网地址 ZooKeeper:官网下载 Hive:官网下载 Sqoop:官网下载 为方便同学…...

umi搭建react项目

UMI 是一个基于 React 的可扩展企业级前端应用框架,提供路由、状态管理、构建和部署等功能,可以帮助开发者快速构建复杂的单页面应用(SPA)和多页面应用(MPA)。它与 React 的关系是,UMI 构建在 R…...

mybatis-plus之数据源切换事务失效问题

为什么存在数据源切换和食物时效问题? 由于业务数据来源不同 需要配置多个数据源来进行数据的查询 编辑等操作 这一切换业务对数据的一致性要求很高那就要保证ACID啦 也就是数据的有效性 要么是成功的 要么是失败的。 数据源切换采用mybatisplus支持 多数据源配置&a…...

vue 百度地图点击marker修改marker图片,其他marker图片不变。

解决思路,就是直接替换对应marker的图片。获取marker对象判断点击的marker替换成新图片,上一个被点击的就替换成老图片。 marker.name tag;marker.id i; //一定要设置id,我这里是设置的循环key值,要唯一性。map.addOverlay(mark…...

【Javaer学习Python】 1、Django安装

安装 Python 和 PyCharm 的方法就略过了,附一个有效激活PyCharm的链接:https://www.quanxiaoha.com/pycharm-pojie/pycharm-pojie-20241.html 1、安装Django # 安装Django pip install Django# 查看当前版本 python -m django --version 5.0.62、创建项…...

SSL协议

SSL 安全传输协议(安全套接层) 也叫TLS ---- 传输层安全协议 SSL的工作原理:SSL协议因为是基于TCP协议工作的,通信双方需要先建立TCP会话。因为SSL协议需要进行安全保证,需要协商安全参数,所以也需要建立…...

什么情况下会造成索引失效?

2.3.4. 索引失效 对索引使用左或者左右模糊匹配 使用左或者左右模糊匹配的时候,也就是 like %xx 或者 like %xx% 这两种方式都会造成索引失效。但是如果前缀是确定的那么就可以使用到索引,例如 name like 许%。 因为索引 B 树是按照「索引值」有序排列…...

间隔采样视频的代码

项目统计模型准确率 项目会保存大量视频,为了统计模型的精度,我们想要十五分钟抽取一个视频用来统计。 import os import shutil from datetime import datetime, timedelta #抽取视频的代码,会在每个小时的0分、15分、30分、45分取一个命名…...

C++ QT设计模式 (第二版)

第3章 Qt简介 3.2 Qt核心模块 Qt是一个大库,由数个较小的库或者模块组成,最为常见的如下:core、gui、xml、sql、phonon、webkit,除了core和gui,这些模块都需要在qmake的工程文件中启用 QTextStream 流,Qdat…...

【经验总结】超算互联网服务器 transformers 加载本地模型

1. 背景 使用 超算互联网 的云服务,不能连接外网,只能把模型下载到本地,再上传上去到云服务。 2. 模型下载 在 模型中 https://huggingface.co/models 找到所需的模型后 点击下载 config.json pytorch_model.bin vocab.txt 3. 上传模型文…...

ubuntu编译pcl时报错

报错如下 cc1plus: warning: -Wabi wont warn about anything [-Wabi] cc1plus: note: -Wabi warns about differences from the most up-to-date ABI, which is also used by default cc1plus: note: use e.g. -Wabi11 to warn about changes from GCC 7 在网上找到了一封邮件…...

Rust中的单元测试

概述 Rust内置了单元测试的支持,这点和Golang一样,非常的棒,我超级喜欢单元测试!!! 本节课的代码还是基于之前的求公约数的案例。 之前的完整代码如下: fn gcd(mut n: u64, mut m: u64) ->…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)&#xff0…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...