当前位置: 首页 > news >正文

基于yolov2深度学习网络的昆虫检测算法matlab仿真,并输出昆虫数量和大小判决

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022A

3.部分核心程序

..........................................................
for i = 1:12          % 遍历结构体就可以一一处理图片了ifigureimg = imread([imgPath [num2str(i),'.jpeg']]); %读取每张图片 I               = imresize(img,img_size(1:2));[bboxes,scores] = detect(detector,I,'Threshold',0.48);S   = bboxes(:,3).*bboxes(:,4);if ~isempty(bboxes) % 如果检测到目标idx = [];idx1= find(S>900);idx2= find(S<=900);if isempty(idx1)==0I = insertObjectAnnotation(I,'rectangle',bboxes(idx1,:),scores(idx1),'Color', 'r',FontSize=10);% 在图像上绘制检测结果endif isempty(idx2)==0I = insertObjectAnnotation(I,'rectangle',bboxes(idx2,:),scores(idx2),'Color', 'y',FontSize=10);% 在图像上绘制检测结果endendNUM = length(scores);imshow(I, []);  % 显示带有检测结果的图像title(['昆虫数量:',num2str(NUM),',大:',num2str(length(idx1)),',小:',num2str(length(idx2))]);pause(0.01);% 等待一小段时间,使图像显示更流畅if cnt==1cnt=0;end
end
143

4.算法理论概述

       基于YOLOv2(You Only Look Once version 2)深度学习网络的昆虫检测算法,是一种实时、高效的物体检测方法,特别适合于快速识别和定位图像中的昆虫,进而统计昆虫数量并估计其大小。YOLOv2相较于初代YOLO,在保持实时性的同时显著提升了检测精度,这得益于其在网络结构、损失函数以及训练策略上的改进。

      YOLOv2的核心在于其统一的检测网络设计,它将目标检测任务视为一个回归问题,直接从完整图像预测边界框(bbox)和类别概率。相比YOLO,YOLOv2采用了几个关键升级:

      在应用到昆虫检测时,通过YOLOv2预测出的边界框和类别概率,可以直观地统计出图像中昆虫的数量。昆虫的大小可以通过边界框的宽度和高度直接得到,或者转换为实际尺寸(如果已知图像的物理尺寸和像素尺寸比例)。具体来说,若预测到的昆虫框尺寸为w×h像素,则昆虫大小的近似估计为:

       基于YOLOv2的昆虫检测算法,通过深度学习网络的强大特征提取能力,结合精心设计的网络结构和损失函数,能够在保证速度的同时,实现高精度的昆虫识别与计数。这种技术对于农业害虫监控、生态研究、以及公共卫生管理等领域具有重要的应用价值。通过持续优化网络参数和训练策略,可以进一步提升模型对不同种类、不同大小昆虫的检测能力。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于yolov2深度学习网络的昆虫检测算法matlab仿真,并输出昆虫数量和大小判决

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022A 3.部分核心程序 .......................................................... for i 1:12 % 遍历结…...

Java进阶学习笔记2——static

static&#xff1a; 叫静态&#xff0c;可以修饰成员变量、成员方法。 成员变量按照有无static修饰&#xff0c;分为两种&#xff1a; 类变量&#xff1a;有static修饰&#xff0c;属于类&#xff0c;在计算机中只有一份&#xff0c;会被类的全部对象共享。静态成员变量。 实…...

spring boot集成Knife4j

文章目录 一、Knife4j是什么&#xff1f;二、使用步骤1.引入依赖2.新增相关的配置类3.添加配置信息4.新建测试类5. 启动项目 三、其他版本集成时常见异常1. Failed to start bean ‘documentationPluginsBootstrapper2.访问地址后报404 一、Knife4j是什么&#xff1f; 前言&…...

redis核心面试题一(架构原理+RDB+AOF)

文章目录 0. redis与mysql区别1. redis是单线程架构还是多线程架构2. redis单线程为什么这么快3. redis过期key删除策略4. redis主从复制架构原理5. redis哨兵模式架构原理6. redis高可用集群架构原理7. redis持久化之RDB8. redis持久化之AOF9. redis持久化之混合持久化 0. red…...

STM32F1之SPI通信·软件SPI代码编写

目录 1. 简介 2. 硬件电路 移位示意图 3. SPI时序基本单元 3.1 起始条件 3.2 终止条件 3.3 交换一个字节&#xff08;模式0&#xff09; 3.4 交换一个字节&#xff08;模式1&#xff09; 3.5 交换一个字节&#xff08;模式2&#xff09; 3.6 交换一个字节&a…...

实战:生成个性化词云的Python实践【7个案例】

文本挖掘与可视化&#xff1a;生成个性化词云的Python实践【7个案例】 词云&#xff08;Word Cloud&#xff09;&#xff0c;又称为文字云或标签云&#xff0c;是一种用于文本数据可视化的技术&#xff0c;通过不同大小、颜色和字体展示文本中单词的出现频率或重要性。在词云中…...

云存储与云计算详解

1. 云存储与云计算概述 1.1 云存储 云存储&#xff08;Cloud Storage&#xff09;是指通过互联网将数据存储在远程服务器上&#xff0c;用户可以随时随地访问和管理这些数据。云存储的优点包括高可扩展性、灵活性和成本效益。 1.2 云计算 云计算&#xff08;Cloud Computin…...

【飞舞的花瓣】飞舞的花瓣代码||樱花代码||表白代码(完整代码)

关注微信公众号「ClassmateJie」有完整代码以及更多惊喜等待你的发现。 简介/效果展示 这段代码是一个HTML页面&#xff0c;其中包含一个canvas元素和相关的JavaScript代码。这个页面创建了一个飘落花瓣的动画效果。 代码【获取完整代码关注微信公众号「ClassmateJie」回复“…...

网络安全的重要组成部分:数据库审计

数据库审计&#xff08;简称DBAudit&#xff09;以安全事件为中心&#xff0c;以全面审计和精确审计为基础&#xff0c;实时记录网络上的数据库活动&#xff0c;对数据库操作进行细粒度审计的合规性管理&#xff0c;对数据库遭受到的风险行为进行实时告警。它通过对用户访问数据…...

gc和gccgo编译器

Go 语言有两个主要的编译器&#xff0c;分别是 Go 编译器&#xff08;通常简称为 gc&#xff09;和 GCCGO。它们之间有一些重要的异同点&#xff1a; gc 编译器&#xff1a; gc 是 Go 语言的官方编译器&#xff0c;由 Go 语言的开发团队维护。它是 Go 语言最常用的编译器&#…...

开放重定向漏洞

开放重定向漏洞 1.开放重定向漏洞概述2.攻击场景&#xff1a;开放重定向上传 svg 文件3.常见的注入参数 1.开放重定向漏洞概述 开放重定向漏洞&#xff08;Open Redirect&#xff09;是指Web应用程序接受用户提供的输入&#xff08;通常是URL参数&#xff09;&#xff0c;并将…...

基于YoloV4汽车多目标跟踪计数

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景与意义 随着城市交通的快速发展&#xff0c;交通流量和车辆密度的不断增加&#xff0c;对交通管理和控…...

交叉编译程序,提示 incomplete type “struct sigaction“ is not allowed

问题描述 incomplete type "struct sigaction" is not allowed解决办法 在代码的最顶端添加如下代码即可 #define _XOPEN_SOURCE此定义不是简单的宏定义&#xff0c;是使程序符合系统环境的不可缺少的部分 _XOPEN_SOURCE为了实现XPG&#xff1a;The X/Open Porta…...

叶面积指数(LAI)数据、NPP数据、GPP数据、植被覆盖度数据获取

引言 多种卫星遥感数据反演叶面积指数&#xff08;LAI&#xff09;产品是地理遥感生态网推出的生态环境类数据产品之一。产品包括2000-2009年逐8天数据&#xff0c;值域是-100-689之间&#xff0c;数据类型为32bit整型。该产品经过遥感数据获取、计算归一化植被指数、解译植被类…...

光环P3O不错的一个讲座

光环P3O不错的一个讲座&#xff0c;地址&#xff1a;https://apphfuydjku5721.h5.xiaoeknow.com/v2/course/alive/l_663dc840e4b0694c62c32d1d?app_idapphfuydJkU5721&share_fromu_5c987304d8515_wH2E5HgCgx&share_type5&share_user_idu_5c987304d8515_wH2E5HgCgx…...

Typescnipt 学习笔记

TypeScript 学习笔记 一、什么是 TypeScript TypeScript 是一种由微软开发的开源编程语言&#xff0c;它是 JavaScript 的一个超集。它添加了静态类型和面向对象的特性&#xff0c;并提供了更强大的工具和功能&#xff0c;以增强 JavaScript 的开发体验。 二、为什么要学习 …...

如何在 Ubuntu 24.04 (桌面版) 上配置静态IP地址 ?

如果你想在你的 Ubuntu 24.04 桌面有一个持久的 IP 地址&#xff0c;那么你必须配置一个静态 IP 地址。当我们安装 Ubuntu 时&#xff0c;默认情况下 DHCP 是启用的&#xff0c;如果网络上可用&#xff0c;它会尝试从 DHCP 服务器获取 IP 地址。 在本文中&#xff0c;我们将向…...

小恐龙跳一跳源码

小恐龙跳一跳源码是前两年就火爆过一次的小游戏源码&#xff0c;不知怎么了今年有火爆了&#xff0c;所以今天就吧这个源码分享出来了&#xff01;有喜欢的直接下载就行&#xff0c;可以本地单机直接点击index.html进行运行&#xff0c;又或者放在虚拟机或者服务器上与朋友进行…...

快手二面准备【面试准备】

快手二面准备【面试准备】 前言版权快手二面准备秋招一面中的问题实习一面中的问题计算机网络和操作系统论坛项目登录注册ThreadLocal代替session存储用户秒杀项目登录注册->阿里验证码->rpcsession为什么改为token实现&#xff0c;redis存储用户信息由binlog的用法->…...

贪心算法2(c++)

最大子矩阵 描述 已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵&#xff0c;你的任务是找到最大的非空(大小至少是1*1)子矩阵。 比如&#xff0c;如下4*4的矩阵 0- 2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0-2 的最大子矩阵是 9 2 -4 1 -18 这个子矩阵的大小是15。 输入…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...

书籍“之“字形打印矩阵(8)0609

题目 给定一个矩阵matrix&#xff0c;按照"之"字形的方式打印这个矩阵&#xff0c;例如&#xff1a; 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为&#xff1a;1&#xff0c;…...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版

1.题目描述 2.思路 当前的元素可以重复使用。 &#xff08;1&#xff09;确定回溯算法函数的参数和返回值&#xff08;一般是void类型&#xff09; &#xff08;2&#xff09;因为是用递归实现的&#xff0c;所以我们要确定终止条件 &#xff08;3&#xff09;单层搜索逻辑 二…...