当前位置: 首页 > news >正文

CLIP 源码分析:simple_tokenizer.py

tokenizer的含义

在这里插入图片描述

from .clip import *引入头文件时为什么有个.

在这里插入图片描述

正文

import gzip
import html
import os
from functools import lru_cacheimport ftfy
import regex as re# 上面的都是头文件
# 这段代码定义了一个函数 default_bpe(),它使用了装饰器 @lru_cache()。
# @lru_cache() 是 Python 中的一个装饰器,用于缓存函数的返回值,以避免重复计算。
# 这样,如果相同的参数再次传递给函数,它会直接返回之前缓存的结果,而不是重新执行函数。
@lru_cache()
# default_bpe() 函数的作用是返回一个文件路径,这个路径是一个位于当前文件所在目录下的文件路径。
# 具体来说,它构造了一个文件路径,指向一个名为 "bpe_simple_vocab_16e6.txt.gz" 的文件。
# 这个文件路径是相对于当前文件所在目录的,因为它使用了 os.path.dirname(__file__) 获取当前文件所在目录的路径,
# 然后通过 os.path.join() 构建了文件的完整路径。
def default_bpe():return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")

Python 中的装饰器概念

在这里插入图片描述
在这里插入图片描述

# 这段代码定义了一个函数 bytes_to_unicode(),同样使用了装饰器 @lru_cache() 来缓存函数的返回值
@lru_cache()
# 这个函数的作用是创建一个字典,将 UTF-8 字节映射到对应的 Unicode 字符串。
# 注释中提到,这个字典的目的是为了在 BPE(Byte Pair Encoding)编码中使用。
# BPE 编码需要在词汇表中有大量的 Unicode 字符,以避免未知字符(UNKs)的出现。
def bytes_to_unicode():"""Returns list of utf-8 byte and a corresponding list of unicode strings.The reversible bpe codes work on unicode strings.This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.This is a signficant percentage of your normal, say, 32K bpe vocab.To avoid that, we want lookup tables between utf-8 bytes and unicode strings.And avoids mapping to whitespace/control characters the bpe code barfs on."""# 函数内部的操作是创建了两个列表 bs 和 cs,分别存储了一组 UTF-8 字节和对应的 Unicode 字符串。# 然后通过循环将所有可能的 8 位字节加入到这两个列表中,确保覆盖了所有可能的情况。# 最后,使用 zip() 函数将这两个列表合并成一个字典,键为 UTF-8 字节,值为对应的 Unicode 字符串。bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))cs = bs[:]n = 0for b in range(2**8):if b not in bs:bs.append(b)cs.append(2**8+n)n += 1cs = [chr(n) for n in cs]return dict(zip(bs, cs))

bs = list(range(ord(“!”), ord(“~”)+1))+list(range(ord(“¡”), ord(“¬”)+1))+list(range(ord(“®”), ord(“ÿ”)+1))

在这里插入图片描述

# 这个函数的作用是提取给定单词中所有相邻字符对的集合,用于后续的处理,比如在文本处理中进行基于字符的分词或编码
def get_pairs(word):"""Return set of symbol pairs in a word.Word is represented as tuple of symbols (symbols being variable-length strings)."""# 创建一个空集合 pairs,用于存储字符对。pairs = set()# 初始化变量 prev_char 为输入单词 word 的第一个字符。prev_char = word[0]# 使用 for 循环遍历输入单词 word 中的每个字符,从第二个字符开始(因为第一个字符已经在 prev_char 中)。for char in word[1:]:# 将相邻的字符对 (prev_char, char) 添加到集合 pairs 中。# 这个操作将当前字符 char 与前一个字符 prev_char 组成一个元组,然后将这个元组添加到集合中。pairs.add((prev_char, char))# 更新 prev_char 的值为当前字符 char,以便在下一次循环中使用。prev_char = char# 返回包含所有相邻字符对的集合 pairs。return pairs
# 这个函数用于对文本进行基本的清洗和修复
def basic_clean(text):# 这一行代码使用了第三方库 ftfy 中的 fix_text() 函数,用于修复文本中的各种编码问题和Unicode字符问题。# 这个函数会尝试修复诸如Unicode编码错误、Unicode编码为HTML实体等问题text = ftfy.fix_text(text)# 这一行代码用于解码 HTML 实体,将 HTML 实体转换回原始字符。# 通常,HTML 实体是用来表示特殊字符的编码形式,比如 &lt; 表示 <,&gt; 表示 >。# 由于可能存在多级嵌套的 HTML 实体,因此使用了两次 html.unescape() 函数来确保解码所有的实体。text = html.unescape(html.unescape(text))# 最后,这一行代码返回经过清洗和修复后的文本,# 并使用 strip() 方法去除文本两端的空白字符,确保文本的整洁性return text.strip()
# 这个函数用于去除文本中的多余空白字符
def whitespace_clean(text):
# 这一行代码使用了 Python 内置的 re 模块,调用了 re.sub() 函数来进行正则表达式替换。
# 具体地,它使用了正则表达式 \s+ 来匹配一个或多个连续的空白字符(包括空格、制表符、换行符等),
# 然后将它们替换为单个空格 ' '。这样可以将连续的空白字符合并成一个空格,从而去除多余的空白。text = re.sub(r'\s+', ' ', text)# 这一行代码使用了字符串的 strip() 方法,去除了文本两端的空白字符,确保文本的整洁性text = text.strip()# 返回经过清洗后的文本return text
# 这段代码定义了一个名为 SimpleTokenizer 的类,它实现了一个简单的分词器,用于将文本分割成词语的序列
# 更具体的,这个类实现了一个基于字节对编码的简单分词器,用于将文本转换为词语序列,并提供了编码和解码的方法来处理文本数据
class SimpleTokenizer(object):
# 类的初始化方法。接受一个参数 bpe_path,默认值为 default_bpe() 函数的返回值(也就上面定义的函数),
# 这个函数用于获取默认的 BPE(字节对编码)路径。
# 在初始化过程中,加载了 BPE 模型文件(这个文件也在文件目录中捏),并设置了一些其他的属性和变量。def __init__(self, bpe_path: str = default_bpe()):self.byte_encoder = bytes_to_unicode()self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')merges = merges[1:49152-256-2+1]merges = [tuple(merge.split()) for merge in merges]vocab = list(bytes_to_unicode().values())vocab = vocab + [v+'</w>' for v in vocab]for merge in merges:vocab.append(''.join(merge))vocab.extend(['<|startoftext|>', '<|endoftext|>'])self.encoder = dict(zip(vocab, range(len(vocab))))self.decoder = {v: k for k, v in self.encoder.items()}self.bpe_ranks = dict(zip(merges, range(len(merges))))self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)# 这个方法用于执行 BPE 编码。它接受一个字符串 token 作为输入,返回经过 BPE 编码后的字符串。def bpe(self, token):if token in self.cache:return self.cache[token]word = tuple(token[:-1]) + ( token[-1] + '</w>',)pairs = get_pairs(word)if not pairs:return token+'</w>'while True:bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))if bigram not in self.bpe_ranks:breakfirst, second = bigramnew_word = []i = 0while i < len(word):try:j = word.index(first, i)new_word.extend(word[i:j])i = jexcept:new_word.extend(word[i:])breakif word[i] == first and i < len(word)-1 and word[i+1] == second:new_word.append(first+second)i += 2else:new_word.append(word[i])i += 1new_word = tuple(new_word)word = new_wordif len(word) == 1:breakelse:pairs = get_pairs(word)word = ' '.join(word)self.cache[token] = wordreturn word# 这个方法用于对文本进行编码,将文本转换为 BPE 词汇的索引序列def encode(self, text):bpe_tokens = []text = whitespace_clean(basic_clean(text)).lower()for token in re.findall(self.pat, text):token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))return bpe_tokens# 这个方法用于对索引序列进行解码,将 BPE 编码后的索引序列转换回文本。def decode(self, tokens):text = ''.join([self.decoder[token] for token in tokens])text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')# 最后返回经过编解码处理的文本数据return text

总结

不难发现,simple_tokenizer.py 这个文件模块就是用来处理我们输入的文本数据的,主要是一些编码上的处理、文本数据的清洗以及文本格式的转换。在最后我们会手动 debug 走一遍流程,看看该项目的各个部分到底是怎么做的都负责了什么。

相关文章:

CLIP 源码分析:simple_tokenizer.py

tokenizer的含义 from .clip import *引入头文件时为什么有个. 正文 import gzip import html import os from functools import lru_cacheimport ftfy import regex as re# 上面的都是头文件# 这段代码定义了一个函数 default_bpe()&#xff0c;它使用了装饰器 lru_cache()。…...

AWS安全性身份和合规性之Shield

shield&#xff1a;盾(牌);(保护机器和操作者的)护罩&#xff0c;防护屏&#xff0c;挡板;屏障;保护物;&#xff08;警察的&#xff09;盾形徽章;保护人;掩护物;盾形纹徽;盾形奖牌; AWS Shield是一项AWS托管的DDoS&#xff08;Distributed Denial of Service&#xff0c;分布式…...

Midjourney入门篇 | 打造最逼真的照片(强烈推荐)

强烈推荐&#xff1a;如何用Midjourney打造最逼真的照片&#xff08;提示词汇总&#xff09; 前言1、逼真照片生成公式2、提示词速查表 总结 前言 今天分享一个系统的入门级Midjourney制图教程&#xff1a;涵盖了最基础的绘画概念及提示词&#xff0c;精选了一些重要的提示词&…...

【运维自动化-配置平台】如何跨业务转移主机

在如何创建业务拓扑中&#xff0c;了解到业务是蓝鲸体系重要的资源管理纬度&#xff0c;主机在业务之前需要流转怎么做呢&#xff1f;比如要把A业务一台主机划给B业务使用权限中心 跨业务转移主机一般场景是由源主机所在业务的负责人发起&#xff0c;需要申请目标业务的相关权…...

connection problem,giving up

参考&#xff1a; https://zhuanlan.zhihu.com/p/93438433 仅仅安装 sudo apt-get install xrdp 在用RDP远程的时候总是卡在登录界面&#xff0c;connection problem,giving up&#xff0c; some problem… 第一步&#xff1a; sudo apt-get install xserver-xorg-core sudo…...

Linux-----sed案例练习

1.数据准备 准备数据如下&#xff1a; [rootopenEuler ~]# cat openlab.txt My name is jock. I teach linux. I like play computer game. My qq is 24523452 My website is http://www.xianoupeng.com My website is http://www.xianoupeng.com My website is http://www.…...

【华为OD机试-C卷D卷-200分】运输时间(C++/Java/Python)

【华为OD机试】-(A卷+B卷+C卷+D卷)-2024真题合集目录 【华为OD机试】-(C卷+D卷)-2024最新真题目录 题目描述 M(1 ≤ M ≤ 20)辆车需要在一条不能超车的单行道到达终点,起点到终点的距离为 N(1 ≤ N ≤ 400)。速度快的车追上前车后,只能以前车的速度继续行驶,求最后一…...

flink程序本地运行报: A JNI error has occurred和java.lang.NoClassDefFoundError

1.问题描述 在idea中运行flink job程序出现如下错误&#xff1a; Error: A JNI error has occurred, please check your installation and try again Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/flink/api/common/io/FileInputFormat …...

yolox-何为EMA?

何为EMA&#xff1f; 定义&#xff1a; 滑动平均/指数加权平均&#xff1a;用来估计变量的局部均值&#xff0c;使得变量的更新与一段时间内的历史取值有关&#xff0c;滑动平均可以看作是变量的过去一段时间取值的均值。 优点&#xff1a; 相比于直接赋值&#xff0c;滑动平均…...

Java:String、StringBuffer和StringBuilder的区别

参考&#xff1a; https://blog.csdn.net/kingzone_2008/article/details/9220691 https://blog.csdn.net/itchuxuezhe_yang/article/details/89966303 String 常量字符串&#xff0c;每次修改都是会新创建一个字符串&#xff0c;当要频繁修改字符串的时候不建议使用 String S…...

虚拟化技术 分布式资源调度

一、实验内容 实现分布式资源调度 二、实验主要仪器设备及材料 安装有64位Windows操作系统的台式电脑或笔记本电脑&#xff0c;建议4C8G或以上配置已安装VMware Workstation Pro已安装Windows Server 2008 R2 x64已安装vCenter Server 三、实验步骤 将主机esxi1和esxi2加入…...

【Element-plus】vue组合式中使用el-upload通过oss接口上传图片流程(可直接复制使用)

Html <el-upload:actionossUrl:on-success"handleImgSuccess":headers"{Authorization:token}"><el-icon><Plus /></el-icon>点击上传图片</el-upload> JS const ossUrl ref("") ossUrl.value 【你的ossUrl】…...

C++ 数据结构算法 学习笔记(33) -查找算法及企业级应用

C 数据结构算法 学习笔记(33) -查找算法及企业级应用 数组和索引 日常生活中&#xff0c;我们经常会在电话号码簿中查阅“某人”的电话号码&#xff0c;按姓查询或者按字母排 序查询&#xff1b;在字典中查阅“某个词”的读音和含义等等。在这里&#xff0c;“电话号码簿”和…...

【Linux】在Ubuntu 16.04上安装Gerrit + PostgreSQL + Apache服务

Gerrit是一个基于Git版本控制系统的运行于Web浏览器上的Code Review工具&#xff0c;本文叙述如何在Ubuntu 16.04上安装Gerrit服务。&#xff08;当然安装Gerrit的方法有很多&#xff0c;本文只是其中之一&#xff09; 文章目录 前提安装PostgreSQL数据库并创建用户下载、配置和…...

数据倾斜那些事儿

目录 一、什么是数据倾斜&#xff1f; 二、预判与预防 三、躲闪策略 四、硬刚策略 一、什么是数据倾斜&#xff1f; 之前在大厂当了好几年的sqlboy&#xff0c;数据倾斜这个“小烦人精”确实经常在工作中出没。用简单的话来说&#xff0c;数据倾斜就像是“贫富差距”在数据…...

python考试成绩管理与分析:从列表到方差

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、考试成绩的输入与列表管理 二、成绩的总分与平均成绩计算 三、成绩方差的计算 四、成…...

Excel某列中有不连续的数据,怎么提取数据到新的列?

这里演示使用高级筛选的例子&#xff1a; 1.设置筛选条件 在D2单元格输入公式&#xff1a;COUNTA(A4)>0 这里有两个注意事项&#xff1a; *. 公式是设置在D2单元格&#xff0c;D1单元格保持为空&#xff0c; **. 为什么公式中选A4单元格&#xff0c;A列的第一个数据在A3…...

翻译《The Old New Thing》- What does it mean when a display change is temporary?

What does it mean when a display change is temporary? - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20080104-00/?p23923 Raymond Chen 2008年01月04日 什么叫临时性的显示设置变更&#xff1f; 当您调用ChangeDisplaySettings函数时…...

【C语言】char,short char,long char分别是多少字节,多少位,多少bit

一&#xff0c;char&#xff0c;short char&#xff0c;long char分别是多少字节 在 C 语言中&#xff0c;char、short、int、long 这些数据类型的大小是平台相关的&#xff0c;它们的大小取决于编译器和操作系统的实现。然而&#xff0c;它们的大小通常遵循以下规则&#xff…...

新V 系首批订单交付!苏州金龙助新疆游骏文旅集团打造旅运新标杆

热播剧集《我的阿勒泰》收官不久&#xff0c;6月新疆旅游旺季将至。 2024年5月下旬&#xff0c;苏州金龙海格客车新V系首批30辆正式交付新疆客户&#xff01; 作为苏州金龙海格客车新V系首批用户&#xff0c;新疆游骏文旅集团董事长王红强表示&#xff1a;“海格新V系从外观、…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一&#xff0c;能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时&#xff0c;需要添加Git仓库地址和凭证&#xff0c;设置构建触发器&#xff08;如GitHub…...

Vue 3 + WebSocket 实战:公司通知实时推送功能详解

&#x1f4e2; Vue 3 WebSocket 实战&#xff1a;公司通知实时推送功能详解 &#x1f4cc; 收藏 点赞 关注&#xff0c;项目中要用到推送功能时就不怕找不到了&#xff01; 实时通知是企业系统中常见的功能&#xff0c;比如&#xff1a;管理员发布通知后&#xff0c;所有用户…...

pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决

问题&#xff1a; pgsql数据库通过备份数据库文件进行还原时&#xff0c;如果表中有自增序列&#xff0c;还原后可能会出现重复的序列&#xff0c;此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”&#xff0c;…...

FOPLP vs CoWoS

以下是 FOPLP&#xff08;Fan-out panel-level packaging 扇出型面板级封装&#xff09;与 CoWoS&#xff08;Chip on Wafer on Substrate&#xff09;两种先进封装技术的详细对比分析&#xff0c;涵盖技术原理、性能、成本、应用场景及市场趋势等维度&#xff1a; 一、技术原…...