当前位置: 首页 > news >正文

构建LangChain应用程序的示例代码:2、使用LangChain库实现的AutoGPT示例:查找马拉松获胜成绩

AutoGPT 示例:查找马拉松获胜成绩

实现 https://github.com/Significant-Gravitas/Auto-GPT,使用LangChain基础组件(大型语言模型(LLMs)、提示模板(PromptTemplates)、向量存储(VectorStores)、嵌入(Embeddings)、工具(Tools))。

!pip install bs4!pip install nest_asyncio
# 导入必要的库
import asyncio
import osimport nest_asyncio
import pandas as pd
from langchain.docstore.document import Document
from langchain_experimental.agents.agent_toolkits.pandas.base import (create_pandas_dataframe_agent,
)
from langchain_experimental.autonomous_agents import AutoGPT
from langchain_openai import ChatOpenAI# Jupyter运行异步事件循环需要同步
nest_asyncio.apply()
# 设置大型语言模型
llm = ChatOpenAI(model="gpt-4", temperature=1.0)# 设置工具
# 我们将设置一个AutoGPT,包括搜索工具、写文件工具、读文件工具、网页浏览工具,以及通过Python REPL与CSV文件交互的工具# 在下方定义您想要使用的任何其他工具:
# 工具定义
import os
from contextlib import contextmanager
from typing import Optionalfrom langchain.agents import tool
from langchain_community.tools.file_management.read import ReadFileTool
from langchain_community.tools.file_management.write import WriteFileToolROOT_DIR = "./data/"@contextmanager
def pushd(new_dir):"""上下文管理器,用于更改当前工作目录。"""prev_dir = os.getcwd()os.chdir(new_dir)try:yieldfinally:os.chdir(prev_dir)@tool
def process_csv(csv_file_path: str, instructions: str, output_path: Optional[str] = None
) -> str:"""通过pandas在有限的REPL中处理CSV文件。只有在将数据作为csv文件写入磁盘后才使用此功能。任何图表都必须保存到磁盘才能由人类查看。指令应该用自然语言编写,而不是代码。假定数据帧已经加载完毕。"""with pushd(ROOT_DIR):try:df = pd.read_csv(csv_file_path)except Exception as e:return f"错误:{e}"agent = create_pandas_dataframe_agent(llm, df, max_iterations=30, verbose=True)if output_path is not None:instructions += f" 将输出保存到磁盘上的{output_path}"try:result = agent.run(instructions)return resultexcept Exception as e:return f"错误:{e}"
# 使用PlayWright浏览网页!pip install playwright!playwright install
async def async_load_playwright(url: str) -> str:"""使用Playwright加载指定的URL,并使用BeautifulSoup解析。"""from bs4 import BeautifulSoupfrom playwright.async_api import async_playwrightdef run_async(coro):event_loop = asyncio.get_event_loop()return event_loop.run_until_complete(coro)@tool
def browse_web_page(url: str) -> str:"""详细的方式,用于抓取整个网页。解析时可能会出现问题。"""return run_async(async_load_playwright(url))
# 在网页上进行问答
# 帮助模型向网页提出更有针对性的问题,避免其记忆混乱from langchain.chains.qa_with_sources.loading import (BaseCombineDocumentsChain,load_qa_with_sources_chain,
)
from langchain.tools import BaseTool, DuckDuckGoSearchRun
from langchain_text_splitters import RecursiveCharacterTextSplitter
from pydantic import Fielddef _get_text_splitter():return RecursiveCharacterTextSplitter(# 设置一个非常小的块大小,只是为了展示。chunk_size=500,chunk_overlap=20,length_function=len,)class WebpageQATool(BaseTool):name = "query_webpage"description = ("浏览网页并检索与问题相关的信息。")text_splitter: RecursiveCharacterTextSplitter = Field(default_factory=_get_text_splitter)qa_chain: BaseCombineDocumentsChain
# 设置记忆
# 这里的记忆用于代理的中间步骤import faiss
from langchain.docstore import InMemoryDocstore
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddingsembeddings_model = OpenAIEmbeddings()
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
# 设置模型和AutoGPT
# 模型设置!pip install duckduckgo_searchweb_search = DuckDuckGoSearchRun()
tools = [web_search,WriteFileTool(root_dir="./data"),ReadFileTool(root_dir="./data"),process_csv,query_website_tool,# HumanInputRun(), # 如果您希望在每个步骤中请求人类帮助,请激活
]agent = AutoGPT.from_llm_and_tools(ai_name="Tom",ai_role="Assistant",tools=tools,llm=llm,memory=vectorstore.as_retriever(search_kwargs={"k": 8}),# human_in_the_loop=True, # 如果您希望添加每个步骤的反馈,请设置为True。
)agent.chain.verbose = True
# 使用AutoGPT查询网络
# 多年来,我花了很多时间爬取数据源和清理数据。让我们看看AutoGPT是否能在这方面提供帮助!# 以下是查找过去5年(截至2022年)波士顿马拉松获胜成绩并将其转换为表格形式的提示。
agent.run(["过去5年(截至2022年)的波士顿马拉松获胜成绩是什么?生成一个包含年份、姓名、原籍国和成绩的表格。"
])

相关文章:

构建LangChain应用程序的示例代码:2、使用LangChain库实现的AutoGPT示例:查找马拉松获胜成绩

AutoGPT 示例:查找马拉松获胜成绩 实现 https://github.com/Significant-Gravitas/Auto-GPT,使用LangChain基础组件(大型语言模型(LLMs)、提示模板(PromptTemplates)、向量存储(VectorStores)、嵌入(Embeddings)、工具(Tools))。…...

代码随想录算法训练营第三十四 |● 1005.K次取反后最大化的数组和 ● 134. 加油站 ● 135. 分发糖果

今天的解析写在了代码注释中 1005.K次取反后最大化的数组和 讲解链接:https://programmercarl.com/1005.K%E6%AC%A1%E5%8F%96%E5%8F%8D%E5%90%8E%E6%9C%80%E5%A4%A7%E5%8C%96%E7%9A%84%E6%95%B0%E7%BB%84%E5%92%8C.html class Solution { public:static bool cmp(i…...

GB-T 43206-2023 信息安全技术 信息系统密码应用测评要求

GB-T 43206-2023 信息安全技术 信息系统密码应用测评要求 编写背景 随着信息技术的飞速发展,信息系统在社会经济活动中扮演着越来越重要的角色。信息安全问题也随之成为社会关注的焦点。GB-T 43206-2023《信息安全技术 信息系统密码应用测评要求》是针对信息系统中…...

线程进阶-1 线程池

一.说一下线程池的执行原理 1.线程池的七大核心参数 (1)int corePoolSize:核心线程数。默认情况下核心线程会一直存活,当设置allowCoreThreadTimeout为true时,核心线程也会被超时回收。 (2)i…...

LabVIEW中PID控制器系统的噪声与扰动抑制策略

在LabVIEW中处理PID控制器系统中的噪声和外部扰动,需要从信号处理、控制算法优化、硬件滤波和系统设计四个角度入手。采用滤波技术、调节PID参数、增加前馈控制和实施硬件滤波器等方法,可以有效减少噪声和扰动对系统性能的影响,提高控制系统的…...

JavaWeb笔记整理+图解——Listener监听器

欢迎大家来到这一篇章——Listener监听器 监听器和过滤器都是JavaWeb服务器三大组件(Servlet、监听器、过滤器)之一,他们对于Web开发起到了不可缺少的作用。 ps:想要补充Java知识的同学们可以移步我已经完结的JavaSE笔记&#x…...

AIGC智能办公实战 课程,祝你事业新高度

在数字化时代,人工智能(AI)已经渗透到我们生活的方方面面,从智能家居到自动驾驶,从医疗诊断到金融分析,AI助手正在改变我们的工作方式和生活质量。那么,你是否想过自己也能从零开始,…...

专科生听劝 这种情况你就不要专转本了

罗翔老师说过,读书学习主要作用是提高人的下限 我们能掌握的只有学习,以确保学历不会太差再去等机遇让自己活得更好 大部分情况来说,专科生努力去专转本挺好的提升自己准没错,我当年也是一心这样想的,但今天不得不说点…...

MySQL增删查改初阶

目录 一,数据库操作 1.关键字 show 显示当前数据库有哪些:show databases; 2.创建数据库 3.选中数据库 4.删除数据库 二,表的操作,在选中数据库的基础之上 1.查看表的结构 2.创建表 3.查看当前选中的数据库中…...

IService 接口中定义的常用方法

文心一言生成 以下是一些 IService 接口中定义的常用方法(以你提供的 UserSQL 类为例,该类继承自 ServiceImpl,因此也会拥有这些方法): 插入(新增) boolean save(T entity): 插入一条记录&…...

api网关kong对高频的慢接口进行熔断

一、背景 在生产环境,后端服务的接口响应非常慢,是因为数据库未创建索引导致。 如果QPS低的时候,因为后端服务有6个高配置的节点,虽然接口慢,还未影响到服务的正常运行。 但是,当QPS很高的时候&#xff0c…...

python作业:实现一个任务列表管理系统,使用到python类、对象、循环等知识

实现一个简单的任务列表管理系统,可以用于python学习的作业或者练习。系统的功能包括: 用户可以添加任务、查看任务列表、标记任务为已完成,以及删除任务。 代码如下: class Task: def __init__(self, name, completedFalse):…...

大宋咨询(深圳产品价格调查)如何开展电子商品渠道价格监测

开展电子商品渠道价格监测是当今电商时代的重要任务之一。随着电子商务的迅猛发展,电子商品的价格波动日益频繁,市场竞争也愈发激烈。为了解优化渠道管理策略,提升品牌竞争力,大宋咨询(深圳市场调查)受客户…...

py黑帽子学习笔记_web攻击

python网络库 py2的urllib2 py3好像把urllib2继承到了标准库urllib,直接用urllib就行,urllib2在urllib里都有对应的接口 py3的urllib get请求 post请求,和get不同的是,先把post请求数据和请求封装到request对象,再…...

MVC、MVP 和 MVVM 架构总结

MVC、MVP 和 MVVM 是常见的软件架构模式,主要用于组织应用程序的结构,特别是在用户界面和业务逻辑之间进行分离。以下是对它们的详细解释,包括它们的差异、优缺点。 MVC(Model-View-Controller) 结构 Model&#xf…...

C++ vector的使用和简单模拟实现(超级详细!!!)

目录 前言 1.STL是什么 2.vector使用 2.1 vector简介 2.2 常用接口函数 1. 构造函数 2.operator[ ]和size,push_back 3. 用迭代器进行访问和修改 4. 范围for遍历 5.修改类型函数 pop_back find insert erase 6. 容量相关函数capacity resize reserve 3.…...

MySQL中,不能在一个DML(数据操纵语言,如INSERT, UPDATE, DELETE)语句中直接引用目标表进行子查询

错误示例 <delete id"deleteOldRelations">DELETE FROM departments_closure_tableWHERE descendant IN ( SELECT descendant FROM departments_closure_tableWHERE ancestor #{departmentId})</delete>程序运行之后&#xff0c;会报错&#xff1a;You …...

【CH32V305FBP6】4. systick 配置

配置 main.c void SYSTICK_Init_Config(u_int64_t ticks) {SysTick->SR & ~(1 << 0);//clear State flagSysTick->CMP ticks - 1;SysTick->CNT 0;SysTick->CTLR 0xF;NVIC_SetPriority(SysTicK_IRQn, 15);NVIC_EnableIRQ(SysTicK_IRQn); }中断计数 …...

【PECL】在扩展中实现 autoload

【PECL】在扩展中实现 autoload 摘要PHP代码想这么写C 代码这么实现 摘要 php-8.3.x 用扩展写个框架。想实现类管理器&#xff0c;自动加载&#xff0c;上代码&#xff1a; PHP代码想这么写 $ws new \Ziima\Applet(); $ws->import(Ziima, ../base/core); $ws->runAu…...

企业微信H5授权登录

在企业中如果需要在打开的网页里面携带用户的身份信息&#xff0c;第一步需要获取code参数 如何实现企业微信H5获取当前用户信息即accessToken&#xff1f; 1.在应用管理--》创建应用 2.创建好应用&#xff0c;点击应用主页-》设置-》网页-》将授权链接填上去 官方文档可以看…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...