当前位置: 首页 > news >正文

深度学习21天 —— 卷积神经网络(CNN):识别验证码( 第12天)

目录

一、前期准备

1.1 标签数字化

1.2 加载数据

1.3 配置数据

二、其他

2.1 损失函数 categorical_crossentropy

2.2 plt.legend(loc=' ')

2.3 history.history


 活动地址:CSDN21天学习挑战赛

学习:深度学习100例-卷积神经网络(CNN)识别验证码 | 第12天_K同学啊的博客-CSDN博客

一、前期准备

1.1 标签数字化

number   = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
char_set       = number + alphabet
char_set_len   = len(char_set)
label_name_len = len(all_label_names[0])# 将字符串数字化
def text2vec(text):vector = np.zeros([label_name_len, char_set_len])for i, c in enumerate(text):idx = char_set.index(c)vector[i][idx] = 1.0return vectorall_labels = [text2vec(i) for i in all_label_names]

text 为 all_label_names 即标签名称的值,假设标签是 677g3,则一次输入进函数 text2vec:6、7、7、g、3

enumerate(text) 返回了text的 索引和值 给 i 和 c ,idx 为在 char_set 里找到的 c的索引值,所以新构建了一个全0 的二维数组,行数为标签的长度,列数为字符集合 char_set 的长度,转化结果即为,每i行的对应标签名称的第i个值对应的索引为1,其余为0

1.2 加载数据

AUTOTUNE = tf.data.experimental.AUTOTUNEpath_ds  = tf.data.Dataset.from_tensor_slices(all_image_paths)
image_ds = path_ds.map(load_and_preprocess_image, num_parallel_calls=AUTOTUNE)
label_ds = tf.data.Dataset.from_tensor_slices(all_labels)image_label_ds = tf.data.Dataset.zip((image_ds, label_ds))
image_label_ds

tf.data.Dataset.from_tensor_slices_方如一的博客-CSDN博客

与 prefetch()使用类似,Dataset.map() 也可以利用多 GPU 资源,并行化地对数据项进行变换,从而提高效率。以前节的 MNIST 数据集为例,假设用于训练的计算机具有 2 核的 CPU,我们希望充分利用多核心的优势对数据进行并行化变换(比如 前节 的旋转 90 度函数 rot90 ),可以使用以下代码:
如代码:

1mnist_dataset = mnist_dataset.map(map_func=rot90, num_parallel_calls=2)

参考:TensorFlow 2.0 常用模块3:tf.data 流水线加速_zk_one的博客-CSDN博客

1.3 配置数据

prefetch() 功能详细介绍:CPU正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU处于空闲状态。因此,训练所用的时间是CPU预处理时间和加速器训练时间的总和。prefetch() 将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第N个训练步时,CPU正在准备第N+1步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch() , CPU和GPU/TPU在大部分时间都处于空闲状态:

BATCH_SIZE = 16train_ds = train_ds.batch(BATCH_SIZE)
train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)val_ds = val_ds.batch(BATCH_SIZE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)
val_ds

二、其他

2.1 损失函数 categorical_crossentropy

model.compile(optimizer="adam",loss='categorical_crossentropy',metrics=['accuracy'])

根据公式我们可以发现,因为yi,要么是0,要么是1。而当yi等于0时,结果就是0,当且仅当yi等于1时,才会有结果。也就是说categorical_crossentropy只专注与一个结果,因而它一般配合softmax做单标签分类。

详情参考:损失函数:categorical_crossentropy_Stealers的博客-CSDN博客_categorical_crossentropy

2.2 plt.legend(loc=' ')

plt.legend(loc=' '):设置图例的位置

plt.plot(),plt.scatter(),plt.legend函数的用法介绍_Sunny.T的博客-CSDN博客_plt.legend

plt.legend(loc='lower right')
plt.legend(loc='upper right')

2.3 history.history

plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])

history:历史查看命令,可用来绘制训练过程中的损失和准确率

相关文章:

深度学习21天 —— 卷积神经网络(CNN):识别验证码( 第12天)

目录 一、前期准备 1.1 标签数字化 1.2 加载数据 1.3 配置数据 二、其他 2.1 损失函数 categorical_crossentropy 2.2 plt.legend(loc ) 2.3 history.history 活动地址:CSDN21天学习挑战赛 学习:深度学习100例-卷积神经网络(CNN&…...

利用 Docker 简化Redis部署:快速搭建Redis服务

利用 Docker 简化Redis部署:快速搭建Redis服务 目录 利用 Docker 简化Redis部署:快速搭建Redis服务为什么选择 Docker准备工作拉取Redis镜像快速运行Redis容器验证Redis服务总结 在现代软件开发中,Redis作为一种高性能的键值数据库&#xff0…...

Web前端框架:深入探索与实践

Web前端框架:深入探索与实践 在当下数字化飞速发展的时代,Web前端框架的选择与应用成为了开发者们关注的焦点。Node.js,作为一种强大的后端技术,在前端框架的构建中也发挥着不可或缺的作用。本文将围绕Node.js Web前端框架&#…...

【算法】贪心算法——柠檬水找零

题解:柠檬水找零(贪心算法) 目录 1.题目2.题解3.参考代码4.证明5.总结 1.题目 题目链接:LINK 2.题解 分情况讨论 贪心算法 当顾客为5元时,收下当顾客为10元时,收下10元并找回5元当顾客为20元时,收下20元并找回10…...

Jmeter安装教程

1 Jmeter下载 Jmeter下载地址:https://jmeter.apache.org/download_jmeter.cgi,选择需要的版本点击下载 解压jmeter安装包 解压后的安装包如下: 2 配置Jmeter环境变量 进入环境变量配置页面:计算机->属性->高级系统设置-&…...

关于磁盘管理

磁盘管理是操作系统提供的一项功能,用于高效地组织、维护和控制计算机的硬盘驱动器及其卷(分区)。通过磁盘管理工具,用户和管理员可以执行多种与存储相关的高级任务,主要包括: 初始化新磁盘: …...

人大金仓数据库大小写不敏感确认

1、图形化确认(管理—其他选项—预设选项) 2、命令行确认 # ksql -p 54321 -U system test # show enable_ci; 查看是否大小写敏感,on表示大小敏感,off表示大小写不敏感,使用某些项目的时候,需要设置数据库大小写不敏感&#…...

【Java】还有人不懂继承?25 个 Case 包教包会

还有人不懂继承?25 个 Case 包教包会 1.Implement single inheritance2.Implement multilevel inheritance3.Implement hierarchical inheritance4.Override a base class method into a derived class5.Demonstrate the protected access specifier6.Create an Stu…...

Qt实现窗口失去焦点抖动功能

一、失去焦点检测 当窗口失去焦点时会发出FocusOut事件,具体实现如下: 首先给窗口安装事件过滤器: this->installEventFilter(this);然后在事件过滤器函数中判断有没有失去焦点 bool MessageDialog::eventFilter(QObject *object, QEve…...

Flink 数据源

原理 在 Flink 中,数据源(Source)是其中一个核心组件,负责从各种来源读取数据供 Flink 程序处理。 Flink 的数据源类型丰富,涵盖了从简单测试到生产环境使用的各种场景。Kafka、Socket、文件和集合是 Flink 中最常见…...

在本地电脑中如何用命令操作远程服务器上的数据库

日常做服务器维护,经常操作的2个事情,一个是备份远程服务器上的数据库到本地电脑,一个是将备份下来的数据库是恢复到本机做测试用。下面以阿里云的mysql为例,看看怎么弄。电脑是win10系统,先打开cmd命令行模式&#xf…...

uniApp子组件监听数据的变化的方法之一

props:{//用来接收外界传递过来的数据swiperList:{type:Array,default:[]}}, swiperList:是父组件传递过来的值 通过 watch 监听(在父组件中也同样可以使用,跟VUE的监听数据变化同理) watch:{//监听组件中的数据变化swiperList(ol…...

Python容器化技术的15个Docker实践

今天,我们将一起探索如何利用Docker这一强大的容器化工具,来提升你的Python项目开发、部署效率。通过一系列由浅入深的实践案例,你将学会如何将Python应用装入“小盒子”,让它在任何地方都能轻松运行。 1. Docker入门&#xff1a…...

QT天气预报项目(写在简历上)

一、ui设计 实现功能:可以搜索不同的城市进行天气的查询,并且显示未来7天内的天气,并绘制出当天的最高气温和最低气温曲线图。 学到的知识: stylesheet界面美化 Json数据解析 HTTP通信get请求 使用事件过滤器绘制温度曲线 多控件处理(利用数组) 代码整合调试能力 二…...

从零到一建设数据中台 - 数据可视化

从零到一建设数据中台(八)- 数据可视化 一、数据可视化大屏 数据可视化是借助于图形化手段,清晰有效地传达与沟通信息。 将一些业务的关键指标通过数据可视化的方式展示到一块或多块LED大屏上,以大屏为主要展示载体的数据可视化设计。 在数据可视化大屏构建过程中,为了…...

一步步实现知乎热榜采集:Scala与Sttp库的应用

背景 在大数据时代,网络爬虫技术发挥着不可或缺的作用。它不仅能够帮助我们快速地获取互联网上的信息,还能处理和分析这些数据,为我们提供深刻的洞察。知乎,作为中国领先的问答社区,汇聚了各行各业的专家和广大用户的…...

Windows和Linux系统部署Docker(2)

目录 一、Linux系统部署docker 前置环境: 1.安装需要的软件包, yum-util 提供yum-config-manager功能 2.添加阿里云 docker-ce 仓库 3.安装docker软件包 4.启动 docker并设置开机自启 5.查看版本: 二、windows系统部署docker 1.查看…...

PyCharm中快速搭建Python虚拟环境的指南

在 PyCharm 中创建一个新的 Python 虚拟环境可以帮助你为不同的项目管理不同的依赖包,避免版本冲突。以下是在 PyCharm 中创建虚拟环境的步骤: 打开或创建一个项目: 如果你还没有打开 PyCharm,首先打开它,然后选择“Open”打开一个…...

C++模板元编程

C模板元编程 为什么需要模板函数&#xff1f; 避免重复写代码 模板函数定义 使用template <class T> 或者template <typename T>其中T是可以变成任何类型调用时候T会替换成需要的类型 twice<int>会将T替换成int template <class T> T twice(T t) {re…...

Lambda表达式与函数式接口

### 泛型&#xff08;Generics&#xff09; 泛型是Java SE 5引入的一个重要特性&#xff0c;它允许在类、接口和方法中使用类型参数&#xff0c;从而提供编译时的类型安全检查和更高的重用性。java public class GenericsExample {public static <T> void printList(Li…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...