pytorch数学操作
文章目录
- 1.torch.bitwise_not()
- 2.torch.bitwise_and()
- 3.torch.ceil()
- 3.torch.clamp()
- 4.torch.torch.floor()
1.torch.bitwise_not()
在 PyTorch 中,torch.bitwise_not() 是一个函数,用于执行逐元素的位非(bitwise NOT)操作。
torch.bitwise_not(input, out=None)
"""
input:输入张量。
out:可选参数,输出张量。
"""
import torchx = torch.tensor([5, 2, 7], dtype=torch.uint8)y = torch.bitwise_not(x)print(y)
tensor([250, 253, 248], dtype=torch.uint8)
当我们使用 torch.bitwise_not() 函数时,它会对输入张量中的每个元素执行位非(bitwise NOT)操作。位非操作是对二进制表示的每一位进行取反的操作,即将 0 变为 1,将 1 变为 0。
例如,如果我们有一个输入张量 x 包含了整数值 [5, 2, 7],这些值的二进制表示分别是 [101, 010, 111]。使用 torch.bitwise_not() 函数对 x 进行位非操作,得到的结果张量 y 的元素将是对应位置上的二进制取反结果。
在示例中,输出张量 y 包含了 [250, 253, 248],这些值的二进制表示分别是 [11111010, 11111101, 11111000]。可以观察到,每个元素的二进制表示中的每一位都被取反。
需要注意的是,输入张量的数据类型对位非操作有影响。在示例中,我们使用了无符号8位整数 (torch.uint8) 的输入张量 x。位非操作会在每个元素的二进制表示中逐位取反,并且结果张量 y 的数据类型仍然是无符号8位整数 (torch.uint8)。
2.torch.bitwise_and()
在 PyTorch 中,torch.bitwise_and() 是一个函数,用于执行逐元素的位与(bitwise AND)操作。
torch.bitwise_and(input, other, out=None)
"""
input:第一个输入张量。
other:第二个输入张量。
out:可选参数,输出张量。
"""
import torchx = torch.tensor([5, 3, 7], dtype=torch.uint8)
y = torch.tensor([3, 6, 5], dtype=torch.uint8)z = torch.bitwise_and(x, y)print(z)
tensor([1, 2, 5], dtype=torch.uint8)
在这个示例中,我们使用 torch.bitwise_and() 函数对张量 x 和 y 中的元素执行位与操作。输入张量 x 和 y 包含了无符号8位整数。torch.bitwise_and() 函数将 x 和 y 对应位置上的元素进行位与操作,得到了结果张量 z。
需要注意的是,位与操作将每个元素的二进制表示的对应位进行逻辑与操作,只有当对应位都为 1 时,结果位才为 1,否则为 0。输出张量 z 的数据类型与输入张量 x 和 y 相同。
3.torch.ceil()
在 PyTorch 中,torch.ceil() 函数用于执行逐元素的向上取整操作。它返回一个新的张量,其中的元素是输入张量中对应元素的向上取整结果。
torch.ceil(input, out=None)
"""
input:输入张量。
out:可选参数,输出张量。
"""
import torchx = torch.tensor([1.2, 2.7, 3.5, 4.9])y = torch.ceil(x)print(y)
tensor([2., 3., 4., 5.])
3.torch.clamp()
在 PyTorch 中,torch.clamp() 函数用于对张量进行截断操作,将张量中的元素限制在指定范围内。它返回一个新的张量,其中的元素被限制在给定的范围内。
torch.clamp(input, min, max, out=None)
"""
input:输入张量。
min:指定的最小值,小于该值的元素会被替换为该值。
max:指定的最大值,大于该值的元素会被替换为该值。
out:可选参数,输出张量。
"""
返回值是一个新的张量,其元素被截断在 [min, max] 的范围内。
import torchx = torch.tensor([1.2, -0.5, 3.7, 2.8])y = torch.clamp(x, min=0, max=2)print(y)
tensor([1.2000, 0.0000, 2.0000, 2.0000])
4.torch.torch.floor()
在 PyTorch 中,torch.floor() 函数用于执行逐元素的向下取整操作。它返回一个新的张量,其中的元素是输入张量中对应元素的向下取整结果。
torch.floor(input, out=None)
"""
input:输入张量。
out:可选参数,输出张量。
"""
import torchx = torch.tensor([1.2, 2.7, 3.5, 4.9])y = torch.floor(x)print(y)
tensor([1., 2., 3., 4.])
相关文章:
pytorch数学操作
文章目录 1.torch.bitwise_not()2.torch.bitwise_and()3.torch.ceil()3.torch.clamp()4.torch.torch.floor() 1.torch.bitwise_not() 在 PyTorch 中,torch.bitwise_not() 是一个函数,用于执行逐元素的位非(bitwise NOT)操作。 t…...
如何做好电子内窥镜的网络安全管理?
电子内窥镜作为一种常用的医疗器械,其网络安全管理对于保护患者隐私和医疗数据的安全至关重要。以下是一些基本原则和步骤,用于确保电子内窥镜的网络安全: 1. 数据加密 为了防止数据泄露,电子内窥镜在传输患者图像数据时应采取有…...
Spring Boot项目中,如何在yml配置文件中读取maven pom.xml文件中的properties标签下的属性值
一、前言 在最近的项目开发过程中,有一个需求,需要在Spring Boot项目的yml配置文件中读取到mave的 pom.xml文件中的properties标签下的属性值,这个要怎么实现呢? 二、技术实践 pom.xml文件中增加测试属性 <properties><…...
C++:模板进阶
✨✨✨学习的道路很枯燥,希望我们能并肩走下来! 文章目录 文章目录 前言 一 非类型模板参数 二 模板的特化 2.1 概念 2.2 函数模板特化 函数模板的易错点 2.3 类模板特化 2.3.1 全特化 2.3.2 偏特化 部分特化 参数更进一步的限制 2.3.3 类模板特化应用示例…...
Linux 磁盘分区步骤
1.lsblk用于查看磁盘分区情况,lsblk -f用于查看uuid字符串以及挂载点。 以下是虚拟机部分添加磁盘的步骤。 其余没展示的都按照默认设置进入下一步即可。 2.添加完成后使用reboot重新进入后再使用lsblk就会发现磁盘sdb已经有了,但是没有分区。现在添加分…...
【TB作品】 51单片机8x8点阵显示滚动汉字仿真
功能 题目5基于51单片机LED8x8点阵显示 流水灯 直接滚动显示HELLO 直接滚动显示老师好 代码 void main( void ) {/** 移位后,右边的是第一个595,接收0X02,显示出0X02* 移位后,左边的是第2个595,接收0Xfe,…...
c++简略实现共享智能指针Shared_Ptr<T>
重点: 1.引用计数在堆上(原本应为原子变量) 2.引用计数增加减少需要加锁保证线程安全。 3.内部实现Release函数用于释放资源 4.未实现,增加自定义删除器可以将Release修改为模板函数,传入可调用参数。对于shared_p…...
2024会声会影全新旗舰版,下载体验!
在当今数字时代,视频内容已成为最受欢迎的媒介之一。无论是个人娱乐、教育还是商业推广,优秀的视频制作都是吸引观众的关键。为了满足广大用户对高质量视频制作软件的需求,我们隆重推出了会声会影2024最新旗舰版。这款软件不仅集成了最先进的…...
使用 Node.js 和 Azure Function App 自动更新 Elasticsearch 索引
作者:来自 Elastic Jessica Garson 维护最新数据至关重要,尤其是在处理频繁变化的动态数据集时。这篇博文将指导你使用 Node.js 加载数据,并通过定期更新确保数据保持最新。我们将利用 Azure Function Apps 的功能来自动执行这些更新…...
UE4_Ben_图形52_水下效果处理
学习笔记,不喜勿喷,欢迎指正,侵权立删!祝愿生活越来越好! 在这个后期处理的效果中,我们可以看到有很多不同的,这里有浓雾,波纹扭曲,镜头扭曲和边缘模糊,在第4…...
RabbitMQ小结
MQ分类 Acitvemq kafka 优点:性能好,吞吐量高百万级,分布式,消息有序 缺点:单机超过64分区,cpu会飙高,消费失败不支持重试 , Rocket 阿里的mq产品 优点:单机吞吐量也…...
中国自动气象站:现代气象观测的中流砥柱
引言 气象观测是人类认识和预报天气的重要手段。在现代科技的推动下,自动气象站成为气象观测的重要工具,为天气预报、防灾减灾和气候研究提供了宝贵的数据支持。本文将介绍中国自动气象站的发展历程、技术特点及其在气象观测中的重要作用。 中国自动气象…...
【微信小程序】连接蓝牙设备
1、检查小程序是否授权蓝牙功能 initBluetooth() {const that thiswx.getSetting({success: (res) > {if (res.authSetting.hasOwnProperty(scope.bluetooth)) {//scope.bluetooth属性存在,且为falseif (!res.authSetting[scope.bluetooth]) {wx.showModal({tit…...
基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例分析实践技术
BIOMOD2是一个R软件包,用于构建和评估物种分布模型(SDMs)。它集成了多种统计和机器学习方法,如GLM、GAM、SVM等,允许用户预测和分析物种在不同环境条件下的地理分布。通过这种方式,BIOMOD帮助研究者评估气候…...
Objective-C之通过协议提供匿名对象
概述 通过协议提供匿名对象的设计模式,遵循了面向对象设计的多项重要原则: 接口隔离原则:通过定义细粒度的协议来避免实现庞大的接口。依赖倒置原则:高层模块依赖于抽象协议,而不是具体实现。里氏替换原则࿱…...
C语言基础(一)
C语言基础 一、标准输出(格式化输出):1、概念:2、注意语法点:3、格式控制符:4、调试技巧:5、代码风格:6、实例: 二、数据类型:1、整型概念:语法&a…...
机器学习_决策树与随机森林
决策树是一种常用的监督学习算法,既可以用于分类任务也可以用于回归任务。决策树通过递归地将数据集划分成更小的子集,逐步建立树结构。每个节点对应一个特征,树的叶子节点表示最终的预测结果。构建决策树的关键是选择最佳的特征来分割数据&a…...
嵌入式系统日志轮转:实现与性能考量
日志轮转是嵌入式系统中管理日志文件的一种常用技术,它通过创建新的日志文件来替代旧的日志文件,从而避免日志文件无限增长,占用过多存储空间。本文将探讨日志轮转的实现方法以及在嵌入式系统中实现日志轮转时需要考虑的性能因素。 一、日志…...
麦肯锡:ChatGPT等生成式AI应用激增,大中华区增长最快
全球顶级咨询公司麦肯锡(McKinsey & Company)在官网发布了《he state of AI in early 2024:Gen AI adoption spikes and starts to generate value》,一份关于生成式AI应用的调查报告。 麦肯锡对多个国家/地区的1,363位管理者进行了调查…...
Vue Router 使用教程
Vue Router 是 Vue.js 的官方路由管理器,它提供了一种方便的方式来管理应用的路由。在本教程中,我们将介绍 Vue Router 的一些常见用法和示例。 一、安装 Vue Router 使用 Vue Router 之前,需要先安装它。可以使用以下命令通过 npm 安装&am…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...
JDK 17 序列化是怎么回事
如何序列化?其实很简单,就是根据每个类型,用工厂类调用。逐个完成。 没什么漂亮的代码,只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...
