神经网络 torch.nn---Linear Layers(nn.Linear)
torch.nn - PyTorch中文文档 (pytorch-cn.readthedocs.io)
torch.nn — PyTorch 2.3 documentation
nn.Linear
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
参数:
- in_features - 每个输入样本的大小
- out_features - 每个输出样本的大小
- bias - 若设置为False,这层不会学习偏置。默认值:True
形状:
- 输入: (N,in_features)(N , in_features)
- 输出: (N,out_features)(N , out_features)
变量:
- weight -形状为(out_features x in_features)的模块中可学习的权值
- bias -形状为(out_features)的模块中可学习的偏置
计算公式:

代码实例讲解
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
# shuffle 是否打乱 False不打乱
# drop_last 最后一轮数据不够时,是否舍弃 true舍弃
class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()self.linear1 = Linear(196608, 10)def forward(self, x):output = self.linear1(x)return outputtudui = Tudui()for data in dataloader:imgs, targets = dataprint(imgs.shape) #torch.Size([16, 3, 32, 32])output= torch.flatten(imgs)# output = torch.reshape(imgs,(1, 1, 1, -1))print(output.shape) #torch.Size([1, 1, 1, 196608])output = tudui.forward(output)print(output.shape)
部分输出结果:
torch.flatten() 和torch.reshape()
output= torch.flatten(imgs)
output = torch.reshape(imgs,(1, 1, 1, -1))
以上两行代码都是将图像展开成一行
-
torch.flatten() 和torch.reshape() 的区别:
-
torch.flatten更方便,可以直接把图像变成一行
-
torch.reshape功能更强大,可任意指定图像尺寸
-
相关文章:
神经网络 torch.nn---Linear Layers(nn.Linear)
torch.nn - PyTorch中文文档 (pytorch-cn.readthedocs.io) torch.nn — PyTorch 2.3 documentation nn.Linear torch.nn.Linear(in_features, out_features, biasTrue, deviceNone, dtypeNone) 参数: in_features - 每个输入样本的大小out_features - 每个输出…...
PPT视频如何16倍速或者加速播放
有两种方式,一种是修改PPT本身,这种方式非常繁琐,不太推荐,还有一种就是修改视频本身,直接让视频是16倍速的视频即可。 如何让视频16倍速,我建议人生苦短,我用Python,几行代码&…...
【ai】DeepStream 简介
NVIDIA Metropolis 平台。 NVIDIA 大都会 利用视觉 AI 将来自数万亿物联网设备的数据转化为有价值的见解。 NVIDIA Metropolis 是一个应用程序框架、一套开发工具和合作伙伴生态系统,它将视觉数据和 AI 结合在一起,以提高各行各业的运营效率和安全性。它有助于理解数万亿个…...
如何学习使用淘宝API?淘宝API运营场景
学习使用淘宝API涉及对其功能、分类、调用方法及实际应用的综合理解。下面按部分详细解释如何系统地学习和掌握淘宝API的使用: 淘宝API接口入门 了解淘宝开放平台:淘宝开放平台为开发者提供了一个可以与淘宝数据进行交互的平台,涵盖了丰富的A…...
Java 面试题:Java 的动态代理是基于什么原理?
编程语言通常有各种不同的分类角度,动态类型和静态类型就是其中一种分类角度,简单区分就是语言类型信息是在运行时检查,还是编译期检查。 与其近似的还有一个对比,就是所谓强类型和弱类型,就是不同类型变量赋值时&…...
Python logging 模块详解
Python 的 logging 模块提供了一个强大而灵活的日志系统。它是 Python 标准库的一部分,因此可以在任何 Python 程序中使用。logging 模块提供了许多有用的功能,包括日志消息的级别设置、日志消息的格式设置、将日志消息输出到不同的目标,以及…...
http://account.battlenet.com.cn
http://account.battlenet.com.cn 魔兽战网 短信验证 查了下,我老早以前账号还在,纪念下,少玩游戏。...
java第二十课 —— 面向对象习题
类与对象练习题 编写类 A01,定义方法 max,实现求某个 double 数组的最大值,并返回。 public class Chapter7{public static void main(String[] args){A01 m new A01();double[] doubleArray null;Double res m.max(doubleArray);if(res !…...
Flask的模块化实践
既作为前端,又作为后端的我,写flask写了那么多行了,其实它们属于不同的模块,比如登录,注册,聊天,用户画像,那我觉得有必要分一下了,系统化的处理一下,不然找个…...
锁存器(Latch)的产生与特点
Latch 是什么 Latch 其实就是锁存器,是一种在异步电路系统中,对输入信号电平敏感的单元,用来存储信息。锁存器在数据未锁存时,输出端的信号随输入信号变化,就像信号通过一个缓冲器,一旦锁存信号有效&#…...
搜维尔科技:「案例」Faceware电影中面部动画的演变历程
面部动画是电影中角色表演的一个重要方面,尤其是在严重依赖电子动画、化妆效果和动作捕捉系统的奇幻电影中。在《龙与地下城:盗贼荣誉》电影中,龙裔角色的面部动画是一个复杂的系统,使该生物在大屏幕上栩栩如生。该系统依赖于一种…...
特征工程技巧—Bert
前段时间在参加比赛,发现有一些比赛上公开的代码,其中的数据预处理步骤值得我们参考。 平常我们见到的都是数据预处理,现在我们来讲一下特征工程跟数据预处理的区别。 数据预处理是指对原始数据进行清洗、转换、缩放等操作,以便为…...
更改 Docker 的默认存储位置
记录一下使用 Docker 遇到的问题,Docker 也用得比较多,最近发现根目录所在磁盘快满了,发现是 Docker 默认会将镜像和容器等数据保存在目录 /var/lib/docker 目录下,我们可以更改 Docker 的默认存储位置,比如改到数据盘…...
搜索与图论:图中点的层次
搜索与图论:图中点的层次 题目描述参考代码 题目描述 输入样例 4 5 1 2 2 3 3 4 1 3 1 4输出样例 1参考代码 #include <cstring> #include <iostream> #include <algorithm>using namespace std;const int N 100010;int n, m; int h[N], e[N]…...
NLP入门——数据预处理:编码规范化
编码规范化 在计算机中,我们需要将字符与字节序列之间建立起映射关系,这个过程被称为编码。有许多不同的编码方式,例如 ASCII、UTF-8、UTF-16 和 GBK 等。这些编码方式会将每个字符编码为一个或多个字节,以便于在计算机、网络和其…...
代码随想录算法训练营第四十八天| 70. 爬楼梯 (进阶)、322. 零钱兑换、279.完全平方数
70. 爬楼梯 (进阶) 题目链接:70. 爬楼梯 (进阶) 文档讲解:代码随想录/爬楼梯 (进阶) 状态:已完成(0遍) 解题过程 这几天博主忙着面试和入职&am…...
c++11 constexpr关键字
constexpr 是 C11 引入的一个关键字,它允许在编译时计算表达式的值,并将这些值存储在程序的常量部分中。这意味着 constexpr 变量和函数可以在编译时进行求值,从而避免了运行时的开销。 constexpr变量 constexpr 变量必须在编译时初始化&am…...
ios 获取图片的一部分区域
可以使用如下的代码: // get part of the image - (UIImage *)getPartOfImage:(UIImage *)img rect:(CGRect)partRect {CGImageRef imageRef img.CGImage;CGImageRef imagePartRef CGImageCreateWithImageInRect(imageRef, partRect);UIImage *retImg [UIImage i…...
数据结构(3)栈、队列、数组
1 栈 1.1 栈的定义 后进先出【LIFO】 1.2 基本操作 元素进栈出栈 只能在栈顶进行!!! 经常考的题: 穿插的进行进栈和出栈 可能有多个选项 1.3 顺序栈 1.3.1 初始化 下标是从0开始的 1.3.2 进栈 更简单的写法: 1.3…...
数据库(入门)
文章目录 一、数据库(DB) 二、数据库管理系统(DBMS) 三、SQL(结构化查询语言) 四、三者的关系 五、端口号(port number) 一、数据库(DB) 定义:按照一定格式存储数据的一些文件的组合。 简单来…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
