当前位置: 首页 > news >正文

神经网络 torch.nn---Linear Layers(nn.Linear)

torch.nn - PyTorch中文文档 (pytorch-cn.readthedocs.io)

torch.nn — PyTorch 2.3 documentation

nn.Linear

torch.nn.Linear(in_featuresout_featuresbias=Truedevice=Nonedtype=None)

参数:

  • in_features - 每个输入样本的大小
  • out_features - 每个输出样本的大小
  • bias - 若设置为False,这层不会学习偏置。默认值:True

形状:

  • 输入: (N,in_features)(N , in_features)
  • 输出: (N,out_features)(N , out_features)

变量:

  • weight -形状为(out_features x in_features)的模块中可学习的权值
  • bias -形状为(out_features)的模块中可学习的偏置

计算公式:

代码实例讲解

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
# shuffle 是否打乱   False不打乱
# drop_last 最后一轮数据不够时,是否舍弃 true舍弃
class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()self.linear1 = Linear(196608, 10)def forward(self, x):output = self.linear1(x)return outputtudui = Tudui()for data in dataloader:imgs, targets = dataprint(imgs.shape)  #torch.Size([16, 3, 32, 32])output= torch.flatten(imgs)# output = torch.reshape(imgs,(1, 1, 1, -1))print(output.shape) #torch.Size([1, 1, 1, 196608])output = tudui.forward(output)print(output.shape)

部分输出结果:

 

torch.flatten() 和torch.reshape() 

output= torch.flatten(imgs)
output = torch.reshape(imgs,(1, 1, 1, -1))

以上两行代码都是将图像展开成一行

  • torch.flatten() 和torch.reshape() 的区别:

    • torch.flatten更方便,可以直接把图像变成一行

    • torch.reshape功能更强大,可任意指定图像尺寸

相关文章:

神经网络 torch.nn---Linear Layers(nn.Linear)

torch.nn - PyTorch中文文档 (pytorch-cn.readthedocs.io) torch.nn — PyTorch 2.3 documentation nn.Linear torch.nn.Linear(in_features, out_features, biasTrue, deviceNone, dtypeNone) 参数: in_features - 每个输入样本的大小out_features - 每个输出…...

PPT视频如何16倍速或者加速播放

有两种方式,一种是修改PPT本身,这种方式非常繁琐,不太推荐,还有一种就是修改视频本身,直接让视频是16倍速的视频即可。 如何让视频16倍速,我建议人生苦短,我用Python,几行代码&…...

【ai】DeepStream 简介

NVIDIA Metropolis 平台。 NVIDIA 大都会 利用视觉 AI 将来自数万亿物联网设备的数据转化为有价值的见解。 NVIDIA Metropolis 是一个应用程序框架、一套开发工具和合作伙伴生态系统,它将视觉数据和 AI 结合在一起,以提高各行各业的运营效率和安全性。它有助于理解数万亿个…...

如何学习使用淘宝API?淘宝API运营场景

学习使用淘宝API涉及对其功能、分类、调用方法及实际应用的综合理解。下面按部分详细解释如何系统地学习和掌握淘宝API的使用: 淘宝API接口入门 了解淘宝开放平台:淘宝开放平台为开发者提供了一个可以与淘宝数据进行交互的平台,涵盖了丰富的A…...

Java 面试题:Java 的动态代理是基于什么原理?

编程语言通常有各种不同的分类角度,动态类型和静态类型就是其中一种分类角度,简单区分就是语言类型信息是在运行时检查,还是编译期检查。 与其近似的还有一个对比,就是所谓强类型和弱类型,就是不同类型变量赋值时&…...

Python logging 模块详解

Python 的 logging 模块提供了一个强大而灵活的日志系统。它是 Python 标准库的一部分,因此可以在任何 Python 程序中使用。logging 模块提供了许多有用的功能,包括日志消息的级别设置、日志消息的格式设置、将日志消息输出到不同的目标,以及…...

http://account.battlenet.com.cn

http://account.battlenet.com.cn 魔兽战网 短信验证 查了下,我老早以前账号还在,纪念下,少玩游戏。...

java第二十课 —— 面向对象习题

类与对象练习题 编写类 A01,定义方法 max,实现求某个 double 数组的最大值,并返回。 public class Chapter7{public static void main(String[] args){A01 m new A01();double[] doubleArray null;Double res m.max(doubleArray);if(res !…...

Flask的模块化实践

既作为前端,又作为后端的我,写flask写了那么多行了,其实它们属于不同的模块,比如登录,注册,聊天,用户画像,那我觉得有必要分一下了,系统化的处理一下,不然找个…...

锁存器(Latch)的产生与特点

Latch 是什么 Latch 其实就是锁存器,是一种在异步电路系统中,对输入信号电平敏感的单元,用来存储信息。锁存器在数据未锁存时,输出端的信号随输入信号变化,就像信号通过一个缓冲器,一旦锁存信号有效&#…...

搜维尔科技:「案例」Faceware电影中面部动画的演变历程

面部动画是电影中角色表演的一个重要方面,尤其是在严重依赖电子动画、化妆效果和动作捕捉系统的奇幻电影中。在《龙与地下城:盗贼荣誉》电影中,龙裔角色的面部动画是一个复杂的系统,使该生物在大屏幕上栩栩如生。该系统依赖于一种…...

特征工程技巧—Bert

前段时间在参加比赛,发现有一些比赛上公开的代码,其中的数据预处理步骤值得我们参考。 平常我们见到的都是数据预处理,现在我们来讲一下特征工程跟数据预处理的区别。 数据预处理是指对原始数据进行清洗、转换、缩放等操作,以便为…...

更改 Docker 的默认存储位置

记录一下使用 Docker 遇到的问题,Docker 也用得比较多,最近发现根目录所在磁盘快满了,发现是 Docker 默认会将镜像和容器等数据保存在目录 /var/lib/docker 目录下,我们可以更改 Docker 的默认存储位置,比如改到数据盘…...

搜索与图论:图中点的层次

搜索与图论&#xff1a;图中点的层次 题目描述参考代码 题目描述 输入样例 4 5 1 2 2 3 3 4 1 3 1 4输出样例 1参考代码 #include <cstring> #include <iostream> #include <algorithm>using namespace std;const int N 100010;int n, m; int h[N], e[N]…...

NLP入门——数据预处理:编码规范化

编码规范化 在计算机中&#xff0c;我们需要将字符与字节序列之间建立起映射关系&#xff0c;这个过程被称为编码。有许多不同的编码方式&#xff0c;例如 ASCII、UTF-8、UTF-16 和 GBK 等。这些编码方式会将每个字符编码为一个或多个字节&#xff0c;以便于在计算机、网络和其…...

代码随想录算法训练营第四十八天| 70. 爬楼梯 (进阶)、322. 零钱兑换、279.完全平方数

70. 爬楼梯 &#xff08;进阶&#xff09; 题目链接&#xff1a;70. 爬楼梯 &#xff08;进阶&#xff09; 文档讲解&#xff1a;代码随想录/爬楼梯 &#xff08;进阶&#xff09; 状态&#xff1a;已完成&#xff08;0遍&#xff09; 解题过程 这几天博主忙着面试和入职&am…...

c++11 constexpr关键字

constexpr 是 C11 引入的一个关键字&#xff0c;它允许在编译时计算表达式的值&#xff0c;并将这些值存储在程序的常量部分中。这意味着 constexpr 变量和函数可以在编译时进行求值&#xff0c;从而避免了运行时的开销。 constexpr变量 constexpr 变量必须在编译时初始化&am…...

ios 获取图片的一部分区域

可以使用如下的代码&#xff1a; // get part of the image - (UIImage *)getPartOfImage:(UIImage *)img rect:(CGRect)partRect {CGImageRef imageRef img.CGImage;CGImageRef imagePartRef CGImageCreateWithImageInRect(imageRef, partRect);UIImage *retImg [UIImage i…...

数据结构(3)栈、队列、数组

1 栈 1.1 栈的定义 后进先出【LIFO】 1.2 基本操作 元素进栈出栈 只能在栈顶进行&#xff01;&#xff01;&#xff01; 经常考的题&#xff1a; 穿插的进行进栈和出栈 可能有多个选项 1.3 顺序栈 1.3.1 初始化 下标是从0开始的 1.3.2 进栈 更简单的写法&#xff1a; 1.3…...

数据库(入门)

文章目录 一、数据库(DB) 二、数据库管理系统&#xff08;DBMS&#xff09; 三、SQL&#xff08;结构化查询语言&#xff09; 四、三者的关系 五、端口号&#xff08;port number&#xff09; 一、数据库(DB) 定义&#xff1a;按照一定格式存储数据的一些文件的组合。 简单来…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

VSCode 使用CMake 构建 Qt 5 窗口程序

首先,目录结构如下图: 运行效果: cmake -B build cmake --build build 运行: windeployqt.exe F:\testQt5\build\Debug\app.exe main.cpp #include "mainwindow.h"#include <QAppli...