当前位置: 首页 > news >正文

利用ArcGIS对长江三角洲地区的gdp水平进行聚类

1、导入矢量图、数据

在这里插入图片描述
长三角地区矢量图
长三角地区矢量图对应数据

2、连接

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、设置属性将人均gdp数据导入

在这里插入图片描述

4、设置标注和图例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
选择布局视图
在这里插入图片描述

5、聚类

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2020年人均gdp地区聚类

6、2005~2020年各地区人均gdp可视化及聚类汇总

(1)2005~2020可视化

2005

在这里插入图片描述

2010在这里插入图片描述

2015

在这里插入图片描述

2020

在这里插入图片描述

(2)根据K-means轮廓系数确定聚类簇数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2015 2010 2015 2020 分别对应的最佳聚类簇数为 2 4 7 5
可以根据这个结果进行分组分析
代码:

import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt# 读取CSV文件
file_path = 'datadata.csv'
data = pd.read_csv(file_path, encoding="GB2312")# 查看数据
print(data.head())# 初始化一个字典来存储各年的轮廓系数
silhouette_scores_dict = {}# 对每一年的GDP数据进行聚类
years = ['2020', '2015', '2010', '2005']for year in years:gdp_data = data[[year]]# 确定最佳K值silhouette_scores = []K = range(2, 11)  # 假设我们考虑2到10个聚类簇for k in K:kmeans = KMeans(n_clusters=k, random_state=42)labels = kmeans.fit_predict(gdp_data)score = silhouette_score(gdp_data, labels)silhouette_scores.append(score)# 保存轮廓系数silhouette_scores_dict[year] = silhouette_scores# 绘制轮廓系数图plt.figure(figsize=(8, 4))plt.plot(K, silhouette_scores, marker='o')plt.xlabel('Number of clusters, K')plt.ylabel('Silhouette Score')plt.title(f'Silhouette Score for K-means Clustering ({year})')plt.savefig(f'silhouette_score_{year}.png')  # 保存图片plt.show()# 找出最佳K值best_k = K[silhouette_scores.index(max(silhouette_scores))]print(f'{year} 年最佳聚类簇数: {best_k}')# 使用最佳K值进行K-means聚类kmeans = KMeans(n_clusters=best_k, random_state=42)labels = kmeans.fit_predict(gdp_data)# 将聚类结果添加到原始数据中data[f'Cluster_{year}'] = labels# 打印聚类结果print(f'{year} 年聚类结果:')print(data[[year, f'Cluster_{year}']].head())# 查看聚类结果
print(data.head())# 保存聚类结果到CSV文件
data.to_csv('clustered_gdp_data.csv', index=False)

(3)根据聚类结果得出聚类可视化及文档

(4)为了方便分析变化 4年都选择簇数为3

2005
在这里插入图片描述
2010
在这里插入图片描述
2015
在这里插入图片描述
2020
在这里插入图片描述

(5)将图片背景设置为透明色

在这里插入图片描述
在这里插入图片描述

相关文章:

利用ArcGIS对长江三角洲地区的gdp水平进行聚类

1、导入矢量图、数据 长三角地区矢量图 长三角地区矢量图对应数据 2、连接 3、设置属性将人均gdp数据导入 4、设置标注和图例 选择布局视图 5、聚类 2020年人均gdp地区聚类 6、2005~2020年各地区人均gdp可视化及聚类汇总 (1)2005~2020可视化 2005 …...

释放视频潜力:Topaz Video AI for mac/win 一款全新的视频增强与修复利器

在数字时代,视频已经成为我们记录生活、分享经历的重要方式。然而,有时候我们所拍摄的视频可能并不完美,可能存在模糊、噪点、抖动等问题。这时候,就需要一款强大的视频增强和修复工具来帮助我们提升视频质量,让它们更…...

MongoDB 正则表达式详解:高效数据查询与处理技巧

MongoDB 的正则表达式(Regular Expression)功能允许在查询中进行模式匹配和文本搜索,为用户提供了强大的灵活性。 基本语法 MongoDB 中使用正则表达式时,通常是在查询语句中使用 $regex 操作符。基本语法如下: { &l…...

第二十六章HTML与CSS书写规范

1.HTML书写规范 1.文档类型声明及编码 统一为html5 声明类型。编码统一为utf-8。 2.页面tdk TDK是一个缩写&#xff0c;其中“T”表示为网页定义标题&#xff0c;“D”表示为网页定义描述 description&#xff0c;“K”表示为搜索引擎定义关键词keywords。 1、<title&g…...

基于FPGA的AD5753(DAC数模转换器)的控制 II(SPI驱动)

基于FPGA的AD5753&#xff08;DAC数模转换器&#xff09;的控制 II&#xff08;已上板验证&#xff09; 语言 &#xff1a;Verilg HDL EDA工具&#xff1a;Vivado 基于FPGA的AD5753&#xff08;DAC数模转换器&#xff09;的控制 II&#xff08;已上板验证&#xff09;一、引言二…...

【全开源】Java同城服务同城信息同城任务发布平台小程序APP公众号源码

&#x1f4e2; 连接你我&#xff0c;让任务触手可及 &#x1f31f; 引言 在快节奏的现代生活中&#xff0c;我们时常需要寻找一些便捷的方式来处理生活中的琐事。同城任务发布平台系统应运而生&#xff0c;它为我们提供了一个高效、便捷的平台&#xff0c;让我们能够轻松发布…...

[Redis]List类型

列表类型来存储多个有序的字符串&#xff0c;a、b、c、d、e 五个元素从左到右组成了一个有序的列表&#xff0c;列表中的每个字符串称为元素&#xff0c;一个列表最多可以存储个元素。在 Redis 中&#xff0c;可以对列表两端插入&#xff08;push&#xff09;和弹出&#xff08…...

export 和 export default 的区别

在 JavaScript 中&#xff0c;export 和 export default 都是用于导出模块中的内容的关键字&#xff0c;但它们有一些区别&#xff1a; export: export 关键字用于导出多个变量、函数或对象。可以一次导出多个内容&#xff0c;并且在导入时需要使用对应的名称。例如&#xff1a…...

29网课交单平台 epay.php SQL注入漏洞复现

0x01 产品简介 29网课交单平台是一个专注于在线教育和知识付费领域的交单平台。该平台基于PHP开发,通过全开源修复和优化,为用户提供了高效、稳定、安全的在线学习和交易环境。作为知识付费系统的重要组成部分,充分利用了互联网的优势,为用户提供了便捷的支付方式、高效的…...

推荐ChatGPT4.0——Code Copilot辅助编程、Diagrams: Show Me绘制UML图、上传PDF并阅读分析

5月14日凌晨1点、太平洋时间的上午 10 点&#xff0c;OpenAI的GPT-4o的横空出世&#xff0c;再次巩固了其作为行业颠覆者的地位。GPT-4o的发布不仅仅是一个产品的揭晓&#xff0c;它更像是向世界宣告AI技术已迈入了一个全新的纪元&#xff0c;连OpenAI的领航者萨姆奥特曼也不禁…...

rollup.js(入门篇)

前沿 Rollup 是一个用于 JavaScript 的模块打包工具&#xff0c;它将小的代码片段编译成更大、更复杂的代码&#xff0c;例如库或应用程序。它使用 JavaScript 的 ES6 版本中包含的新标准化代码模块格式&#xff0c;而不是以前的 CommonJS 和 AMD 等特殊解决方案。ES 模块允许…...

【Spring Cloud Alibaba】开源组件Sentinel

目录 什么是Sentinel发展历史与Hystrix的异同 Sentinel可以做什么&#xff1f;Sentinel的功能Sentinel的开源生态Sentinel的用户安装Sentinel控制台预备环境准备Sentinel 分为两个部分:下载地址 项目集成Sentinel创建项目修改依赖信息添加启动注解添加配置信息在控制器类中新增…...

Android14 WMS-窗口绘制之relayoutWindow流程(一)-Client端

Android14 WMS-窗口添加流程(一)-Client端-CSDN博客 Android14 WMS-窗口添加流程(二)-Server端-CSDN博客 经过上述两个流程后&#xff0c;窗口的信息都已经传入了WMS端。 1. ViewRootImpl#setView 在窗口添加流程(一)中&#xff0c;有这个方法&#xff1a; http://aospxref…...

JVM学习-Jprofiler

JProfiler 基本概述 特点 使用方便&#xff0c;界面操作友好对被分析的应用影响小(提供模板)CPU&#xff0c;Tread&#xff0c;Memory分析功能尤其强大支持对jdbc,noSql,jsp,servlet,socket进行分析支持多种模式(离线、在线)的分析支持监控本地、远程JVM跨平台&#xff0c;拥…...

Skins

本主题解释如何将DevExpress主题/皮肤应用到应用程序中&#xff0c;如何允许用户在运行时在主题之间切换&#xff0c;如何自定义现有皮肤或创建自己的皮肤&#xff0c;等等。 WinForms订阅包括许多基本控件&#xff1a;按钮、复选框、表单、消息框、对话框、对话框等。 我们实现…...

【Meetup】探索Apache SeaTunnel的二次开发与实战案例

在数据科技快速演进的今天&#xff0c;业务场景的复杂化和数据量的激增&#xff0c;推动了大数据技术的迅速发展&#xff0c;在众多开源大数据处理工具中&#xff0c;Apache SeaTunnel以其强大的数据集成能力&#xff0c;成为众多企业的首选。 但随着应用深入&#xff0c;企业面…...

嵌入式Linux系统中RTC应用的操作详解

第一:RTC的作用以及时间简介 “RTC”的英文全称是Reul-Time Clock,翻译过来是实时时钟芯片.实时时钟芯片是日常生活中应用最为广泛的电子器件之一,它为人们或者电子系统提供精确的实时时间,实时时钟芯片通过引脚对外提供时间读写接口,通常内部带有电池,保证在外部系统关…...

Edge 工作区是什么?它都有哪些作用?

什么是工作区 Edge 工作区是什么&#xff1f;它是微软 Edge 浏览器中的一个功能&#xff0c;在帮助用户更好地组织和管理他们的浏览会话。通过工作区&#xff0c;用户可以创建多个独立的浏览环境&#xff0c;每个工作区内包含一组相关的标签页和浏览器设置。这使得用户能够根据…...

Docker|了解容器镜像层(1)

引言 容器非常神奇。它们允许简单的进程表现得像虚拟机。在这种优雅的底层是一组模式和实践&#xff0c;最终使一切运作起来。在设计的根本是层。层是存储和分发容器化文件系统内容的基本方式。这种设计既出人意料地简单&#xff0c;同时又非常强大。在今天的帖子[1]中&#xf…...

vue3设置全局变量并获取 全局响应式变量 窗口大小

设置 js文件统一管理全局变量 方法1 app provide() 全局提供变量 通过inject()使用 方法2 app实例配置全局变量 获取 通过 getCurrentInstance.appContext.config.globalProperties.$innerWidth访问到 code import { ref } from vue export const useGlobalState () > {c…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...