当前位置: 首页 > news >正文

【中间件系列】浅析redis是否适合做消息队列

文章目录

    • 一、简单的list消息队列
        • 1.命令示例
        • 2.伪代码示例
        • 3.方案优劣
    • 二、Pub/Sub发布订阅
        • 1.消息丢失
        • 2.消息堆积
    • 三、相对成熟的Stream
        • 1.redis命令介绍
        • 2.多消费者组测试
        • 3.Stream会持久化吗?
        • 4.消息堆积如何解决?
    • 总结

  用redis也是比较久了,并且也对其他消息中间件也用了相当多的时间,现在就redis是否适合做消息队列来梳理下,获取梳理完之后,可以有一个更加清晰的认知。笔者会从以下几个方面进行梳理。

在这里插入图片描述

一、简单的list消息队列

  众所周知,redis常见的数据结构有StringHashListSetzset。其中List可以是一个列表结构。可以通过LPUSHRPOP两个命令来实现一个简单的队列。

  • LPUSH 将元素依次插入到列表头部
  • RPOP 获取最后一个元素,并且删除。

  如下图所示:生产者通过LPUSH命令,依次插入a、b、c、d四个元素。消费者通过RPOP命令进行消费。

image-20240602102434914

1.命令示例

生产者:

# 通过LPUSH命令往test_queue填充a、b、c、d
127.0.0.1:6379> LPUSH test_queue a
(integer) 1
127.0.0.1:6379> LPUSH test_queue b
(integer) 2
127.0.0.1:6379> LPUSH test_queue c
(integer) 3
127.0.0.1:6379> LPUSH test_queue d
(integer) 4
127.0.0.1:6379>

消费者:

消费者
127.0.0.1:6379> RPOP test_queue
"a"
127.0.0.1:6379> RPOP test_queue
"b"
127.0.0.1:6379> RPOP test_queue
"c"
127.0.0.1:6379> RPOP test_queue
"d"
127.0.0.1:6379> RPOP test_queue
(nil)
127.0.0.1:6379>
2.伪代码示例

  生产者相对简单,以简单的订单支付为例子

//在订单支付成功之后发送给积分系统
public void afterPayHandler(Order order){//发送消息到积分系统redisTemp.LPUSH("order",order);
}

消费者

public void orderMessageListener(){while(true){//获取订单信息Order order = redisTemp.RPOP("order");if(order != null){//做积分系统的业务,如添加积分等逻辑。}}
}

  如上所示:消费者在消费的时候,必须通过循环一直拉取队列数据,达到数据的实时性,但是也出现了CPU空转的问题。如果我们判断空的时候sleep休眠一段时间,那就会存在消息实时性问题。休眠多久合适就成为了难以处理的问题。

好在redis有阻塞拉取的命令。

BRPOP test_queue 10(秒)。拉取命令,阻塞10秒。如果是0就是一直阻塞。

3.方案优劣
  1. 优点:足够简单,也很好理解。但是我确实是想不到哪个场景适合这个方案(笑哭)。感觉也只能算普及知识了。
  2. 缺点
    1. 不支持多消费者。任何一个消费者将redis的元素拉取删除之后,其他消费者都无法再次拉取到。那就只能仅限于一对一消费了。
    2. 消息丢失。没有ACK机制,如果拉取消息后宕机后,无法正常消费,就会导致消息的丢失。

二、Pub/Sub发布订阅

  List数据结构可以认为是开发者为了简单方便,从而引进的一种消息队列的方式,但是绝不”正宗“。Pub/Sub这种从名字上可以看出来,就是专门为了消息队列而生的。

image-20240602203541185

  ​ 从上图可以看出,发布订阅模式,解决了多消费者的问题。但是还是存在两个问题。

1.消息丢失

  发布订阅模型,没有进行消息存储,只是一个单纯的通道,实时的把消息传送给消费者。那么这样就会有一个问题,如果消费者中间下线,再次上线的时候,只能从最新的位置进行消费,这样就会有消息丢失啦。

2.消息堆积

在这里插入图片描述

  上文说,发布订阅模型没有基于任何数据类似,因此,这个操作不会写入RDBAOF中(redis持久化机制)。另外,在消息堆积的时候,数据是通过Buffer缓冲区实现的。这个缓冲区的大小可以在redis中进行配置。如果超过了缓冲区配置的上限,此时,Redis 就会「强制」把这个消费者踢下线。

  总的说,这个发布订阅模式相对比较脆弱,虽然解决了多消费者的问题,但是消息一致性较低,消息丢失概率较高(发布版本时重启了就可能丢消息),试用的场景较少。

三、相对成熟的Stream

  Redis5.0 中增加了Stream消息队列相对成熟,解决了较多的问题。

  1. 支持消息ACK反馈,在消息消费成功的时候,返回消费成功,才不会再次推送消息。
  2. 支持多消费者组。
  3. 消息堆积问题优化。

在这里插入图片描述

1.redis命令介绍

发布命令

解释 
#topic为 myStream1 
# * 代表使用自动生成的ID作为消息的ID
# 接下来是多个 field value 组成的信息。
127.0.0.1:6379> XADD myStream1 * name zhangsan sex 20
"1717500637523-0"
127.0.0.1:6379> XADD myStream1 * name lisi sex 20
"1717500644429-0"
127.0.0.1:6379>

消费命令

# 消费myStream队列的10个数据,最后的0意思是从头开始消费。
127.0.0.1:6379> XREAD COUNT 10 STREAMS myStream1 0
1) 1) "myStream1"2) 1) 1) "1717500637523-0"2) 1) "name"2) "zhangsan"3) "sex"4) "20"2) 1) "1717500644429-0"2) 1) "name"2) "lisi"3) "sex"4) "20"
127.0.0.1:6379>
2.多消费者组测试
#创建一个消费者组为myGroup1并且指定消费位置。最后这个长串是信息的id
127.0.0.1:6379> XGROUP CREATE myStream1 myGroup1 1717500644429-0
OK
#消费者组消费,消费者组为myGroup1 当前消费者id为consumer1 拉取10个信息  注意最后这个 ‘>‘
127.0.0.1:6379> XREADGROUP GROUP myGroup1 consumer1 COUNT 10 STREAMS myStream1 >
1) 1) "myStream1"2) 1) 1) "1717501299234-0"2) 1) "name"2) "lisi"3) "sex"4) "20"
127.0.0.1:6379>

验证ACK机制

  1. myGroup1消费者组拉取一次之后将所有的消息拉取回来
  2. 因为没有进行消息反馈ACK。所以再次拉取的时候,还是将全量的消息拉取回来。
  3. 执行一次ACK命令之后,再次拉取消息,发现少了一条消息。
  4. 再次执行ACK命令后,拉取不到消息了。
127.0.0.1:6379> XREADGROUP GROUP myGroup1 consumer1 COUNT 10 STREAMS myStream1 0
1) 1) "myStream1"2) 1) 1) "1717501299234-0"2) 1) "name"2) "lisi"3) "sex"4) "20"2) 1) "1717502213457-0"2) 1) "name"2) "lisi"3) "sex"4) "20"
127.0.0.1:6379> XREADGROUP GROUP myGroup1 consumer1 COUNT 10 STREAMS myStream1 0
1) 1) "myStream1"2) 1) 1) "1717501299234-0"2) 1) "name"2) "lisi"3) "sex"4) "20"2) 1) "1717502213457-0"2) 1) "name"2) "lisi"3) "sex"4) "20"
127.0.0.1:6379>
127.0.0.1:6379>
127.0.0.1:6379>
127.0.0.1:6379> XACK myStream1 myGroup1 1717502213457-0
(integer) 1
127.0.0.1:6379> XREADGROUP GROUP myGroup1 consumer1 COUNT 10 STREAMS myStream1 0
1) 1) "myStream1"2) 1) 1) "1717501299234-0"2) 1) "name"2) "lisi"3) "sex"4) "20"
127.0.0.1:6379> XACK myStream1 myGroup1 1717501299234-0
(integer) 1
127.0.0.1:6379> XREADGROUP GROUP myGroup1 consumer1 COUNT 10 STREAMS myStream1 0
1) 1) "myStream1"2) (empty list or set)
127.0.0.1:6379>
3.Stream会持久化吗?

  会,不管是RDB 还是AOF都会写入。所以不用担心宕机的问题。

4.消息堆积如何解决?

  既然会将Stream会进行持久化,那么必然消息也会保存在内存中,但是为了内存爆炸,Stream可以在XADD命令的时候,可以通过MAXLEN命令指定消息的最大长度,在超过最大长度的时候,旧消息会被删除,只保留固定长度的新消息。这样看来,消息堆积的问题只是进行了优化,并没有完美的解决

总结

  到此,获取对于redis消息队列的历史有了一定的了解,redis作为运行在内存的数据库而言,这个功能已经是很不错了,或许你的场景足够简单,消息的数量不多,并且对于消息的丢失不是特别的敏感的话,redis的Stream消息队列也是一个不错的选择。

相关文章:

【中间件系列】浅析redis是否适合做消息队列

文章目录 一、简单的list消息队列1.命令示例2.伪代码示例3.方案优劣 二、Pub/Sub发布订阅1.消息丢失2.消息堆积 三、相对成熟的Stream1.redis命令介绍2.多消费者组测试3.Stream会持久化吗?4.消息堆积如何解决? 总结 用redis也是比较久了,并且…...

[NOVATEK] NT96580行车记录仪功能学习笔记

一、u-Boot升级灯 运行u-Boot程序时LED灯闪烁,找到运行过程中一直在运行的函数在里面进行LED引脚电平的翻转 宏定义 Z:\SunFan\AHD580\pip\na51055_PIP\BSP\u-boot\include\configs\nvt-na51055-evb.h Z:\SunFan\AHD580\pip\na51055_PIP\BSP\u-boot\drivers\mtd\nvt_flash_…...

创新案例 | AI数据驱动下的全域数字化转型的五大关键洞见

近年来通过全域数字化转型在竞争激烈的市场中脱颖而出。传统零食行业面临市场竞争加剧和消费者需求多样化的挑战,如何利用数据驱动和AI技术,能更好地实现会员运营效率和用户满意度的显著提升呢?本文将探讨全域数字化转型的五大关键洞见&#…...

学习笔记——网络参考模型——TCP/IP模型(网络层)

三、TCP/IP模型-网络层 1、IPV4报头 (1)IPV4报文格式 IP Packet(IP数据包),其包头主要内容如下∶ Version版本∶4 bit,4∶表示为IPv4; 6∶表示为IPv6。 Header Length首部长度∶4 bit,代表IP报头的长度(首部长度),如果不带Opt…...

AI初识--LLM、ollama、llama都是些个啥?

LLM全称(large language model)也就是大语言模型 什么是Ollama,它与Llama是什么关系? Ollama是一个开源的 LLM(大型语言模型)服务工具,用于简化在本地运行大语言模型,降低使用大语…...

【全开源】JAVA打车小程序APP打车顺风车滴滴车跑腿源码微信小程序打车源码

:构建便捷出行新体验 一、引言:探索打车系统小程序源码的重要性 在数字化快速发展的今天,打车系统小程序已成为我们日常生活中不可或缺的一部分。它以其便捷、高效的特点,极大地改变了我们的出行方式。而背后的关键,…...

LeetCode 两数之和 + 三数之和

两数之和 简单题 思路:一个Map,key是数值,value是该数值对应的下标,遍历的时候判断一下当前数组下标对应的值在map里有没有可组合成target的(具体体现为在map里找target-nums【i】),如果有,直接…...

Switch刷机:安装Android系统和Linux系统

文章目录 Switch刷机解锁SwitchSwitchroot重要提示 安装Android系统安装Linux系统(Ubuntu)安装Lakka系统安装多系统(和大气层系统、官方原生系统并存) Switch刷机 解锁Switch 刷机的前提是要解锁bootloader,早期的NS…...

DeepDriving | 多目标跟踪算法之SORT

本文来源公众号“DeepDriving”,仅用于学术分享,侵权删,干货满满。 原文链接:多目标跟踪算法之SORT 1 简介 SORT是2016年发表的一篇文章《Simple Online and Realtime Tracking》中提出的一个经典的多目标跟踪算法,…...

实验演示方波是由正弦波叠加而成的

方波可以看成是由N个正弦波叠加而成,在数学上,方波可以写成这个式子,大家可以看到这个式子里面包含了无数个奇数次的正弦波。 下面通过运放构成的反相求和电路来看一下,正弦波叠加成方波 对于这个反相求和电路: Ui1是…...

进口电动流量调节阀的选型-美国品牌

进口电动流量调节阀的选型需要综合考虑多个因素,以确保所选阀门能够满足实际应用需求。以下是选型时需要考虑的主要方面: 一、明确应用需求 工作介质:了解介质的性质,包括流体类型、温度、压力以及是否具有腐蚀性或特殊性质。流…...

【人工智能】流行且重要的智能算法整理

✍🏻记录学习过程中的输出,坚持每天学习一点点~ ❤️希望能给大家提供帮助~欢迎点赞👍🏻收藏⭐评论✍🏻指点🙏 小记: 今天在看之前写的文档时,发现有人工智能十大算法的内容&#xf…...

webrtc客户端测试和arm平台测试(待补充)

一、关于API的使用研究 二、遇到的一些问题 1、snd_write Broken pipe 写音频数据到缓存不及时导致,codec没有数据可以播放。 alsa总结 WebRTC源码研究(1)WebRTC架构 WebRTC 中的基本音频处理操作...

Unity ShaderGraph 扭曲

需要注意的是: HDRP ShaderGraph中 你不能扭曲UI,所以假如你要扭曲视频,请把视频在材质上渲染 播放,这样就可以扭曲视频了喔, ShaderGraph扭曲...

鸿蒙Ability Kit(程序框架服务)【应用启动框架AppStartup】

应用启动框架AppStartup 概述 AppStartup提供了一种更加简单高效的初始化组件的方式,支持异步初始化组件加速应用的启动时间。使用启动框架应用开发者只需要分别为待初始化的组件实现AppStartup提供的[StartupTask]接口,并在[startup_config]中配置App…...

DBeaver添加DM8驱动(maven下载和jar包下载配置)

DBeaver 24.0.3添加DM8驱动 下载DBeaver下载DM达梦驱动下载 安装配置使用自带Dameng自行添加达梦驱动 因为最近公司项目有信创要求,所以下载了达梦数据库。使用自带的达梦管理工具不是很方便,于是换了DBeaver。 哼哧哼哧安装好后,创建数据库连…...

EXCEL多sheet添加目录跳转

EXCEL多sheet添加目录跳转 背景 excel中有几十个sheet,点下方左右切换sheet太耗时,希望可以有根据sheet名超链接跳转相应sheet,处理完后再跳回原sheet。 方案一 新建目录sheet,在A1写sheet名,右键选择最下方超链接…...

MySQL之查询性能优化(十)

查询性能优化 MySQL查询优化器的局限性 松散索引扫描 由于历史原因,MySQL并不支持松散索引扫描,也就无法按照不连续的方式扫描一个索引。通常,MySQL的索引扫描需要先定义一个起点和终点,即使需要的数据只是这段索引中很少数的几…...

短视频矩阵源码----如何做正规开发规则分享:

一、什么是SaaS化服务技术开发? (短视频矩阵系统是源头开发的应该分为3个端口---- 总后台控制端、总代理端口,总商户后台) SaaS是软件即服务(Software as a Service)的缩写。它是一种通过互联网提供软件应…...

4. JavaScript 循环与迭代

JavaScript 中提供了这些循环语句&#xff1a; for 语句do … while 语句while 语句label 语句 跳出多级循环 var num 0; outPoint: for (var i 0; i < 10; i) {for (var j 0; j < 10; j) {if (i 5 && j 5) {break outPoint; // 在 i 5&#xff0c;j 5 …...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...