软件杯 题目:基于深度学习的中文对话问答机器人
文章目录
- 0 简介
- 1 项目架构
- 2 项目的主要过程
- 2.1 数据清洗、预处理
- 2.2 分桶
- 2.3 训练
- 3 项目的整体结构
- 4 重要的API
- 4.1 LSTM cells部分:
- 4.2 损失函数:
- 4.3 搭建seq2seq框架:
- 4.4 测试部分:
- 4.5 评价NLP测试效果:
- 4.6 梯度截断,防止梯度爆炸
- 4.7 模型保存
- 5 重点和难点
- 5.1 函数
- 5.2 变量
- 6 相关参数
- 7 桶机制
- 7.1 处理数据集
- 7.2 词向量处理seq2seq
- 7.3 处理问答及答案权重
- 7.4 训练&保存模型
- 7.5 载入模型&测试
- 8 最后
0 简介
🔥 优质竞赛项目系列,今天要分享的是
基于深度学习的中文对话问答机器人
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 项目架构
整个项目分为 数据清洗 和 建立模型两个部分。
(1)主要定义了seq2seq这样一个模型。
首先是一个构造函数,在构造函数中定义了这个模型的参数。
以及构成seq2seq的基本单元的LSTM单元是怎么构建的。
(2)接着在把这个LSTM间单元构建好之后,加入模型的损失函数。
我们这边用的损失函数叫sampled_softmax_loss,这个实际上就是我们的采样损失。做softmax的时候,我们是从这个6000多维里边找512个出来做采样。
损失函数做训练的时候需要,测试的时候不需要。训练的时候,y值是one_hot向量
(3)然后再把你定义好的整个的w[512*6000]、b[6000多维],还有我们的这个cell本身,以及我们的这个损失函数一同代到我们这个seq2seq模型里边。然后呢,这样的话就构成了我们这样一个seq2seq模型。
函数是tf.contrib.legacy_seq2seq.embedding_attention_seq2seq()
(4)最后再将我们传入的实参,也就是三个序列,经过这个桶的筛选。然后放到这个模型去训练啊,那么这个模型就会被训练好。到后面,我们可以把我们这个模型保存在model里面去。模型参数195M。做桶的目的就是节约计算资源。
2 项目的主要过程
前提是一问一答,情景对话,不是多轮对话(比较难,但是热门领域)
整个框架第一步:做语料
先拿到一个文件,命名为.conv(只要不命名那几个特殊的,word等)。输入目录是db,输出目录是bucket_dbs,不存在则新建目录。
测试的时候,先在控制台输入一句话,然后将这句话通过正反向字典Ids化,然后去桶里面找对应的回答的每一个字,然后将输出通过反向字典转化为汉字。
2.1 数据清洗、预处理
读取整个语料库,去掉E、M和空格,还原成原始文本。创建conversion.db,conversion表,两个字段。每取完1000组对话,插入依次数据库,批量提交,通过cursor.commit.
2.2 分桶
从总的conversion.db中分桶,指定输入目录db, 输出目录bucket_dbs.
检测文字有效性,循环遍历,依次记录问题答案,每积累到1000次,就写入数据库。
for ask, answer in tqdm(ret, total=total):if is_valid(ask) and is_valid(answer):for i in range(len(buckets)):encoder_size, decoder_size = buckets[i]if len(ask) <= encoder_size and len(answer) < decoder_size:word_count.update(list(ask))word_count.update(list(answer))wait_insert.append((encoder_size, decoder_size, ask, answer))if len(wait_insert) > 10000000:wait_insert = _insert(wait_insert)break
将字典维度6865未,投影到100维,也就是每个字是由100维的向量组成的。后面的隐藏层的神经元的个数是512,也就是维度。
句子长度超过桶长,就截断或直接丢弃。
四个桶是在read_bucket_dbs()读取的方法中创建的,读桶文件的时候,实例化四个桶对象。
2.3 训练
先读取json字典,加上pad等四个标记。
lstm有两层,attention在解码器的第二层,因为第二层才是lstm的输出,用两层提取到的特征越好。
num_sampled=512, 分批softmax的样本量(
训练和测试差不多,测试只前向传播,不反向更新
3 项目的整体结构
s2s.py:相当于main函数,让代码运行起来
里面有train()、test()、test_bleu()和create_model()四个方法,还有FLAGS成员变量,
相当于静态成员变量 public static final string
decode_conv.py和data_utils.py:是数据处理
s2s_model.py:
里面放的是模型
里面有init()、step()、get_batch_data()和get_batch()四个方法。构造方法传入构造方法的参数,搭建S2SModel框架,然后sampled_loss()和seq2seq_f()两个方法
data_utils.py:
读取数据库中的文件,并且构造正反向字典。把语料分成四个桶,目的是节约计算资源。先转换为db\conversation.db大的桶,再分成四个小的桶。buckets
= [ (5, 15), (10, 20), (15, 25), (20, 30)]
比如buckets[1]指的就是(10, 20),buckets[1][0]指的就是10。
bucket_id指的就是0,1,2,3
dictionary.json:
是所有数字、字母、标点符号、汉字的字典,加上生僻字,以及PAD、EOS、GO、UNK 共6865维度,输入的时候会进行词嵌入word
embedding成512维,输出时,再转化为6865维。
model:
文件夹下装的是训练好的模型。
也就是model3.data-00000-of-00001,这个里面装的就是模型的参数
执行model.saver.restore(sess, os.path.join(FLAGS.model_dir,
FLAGS.model_name))的时候,才是加载目录本地的保存的模型参数的过程,上面建立的模型是个架子,
model = create_model(sess, True),这里加载模型比较耗时,时间复杂度最高
dgk_shooter_min.conv:
是语料,形如: E
M 畹/华/吾/侄/
M 你/接/到/这/封/信/的/时/候/
decode_conv.py: 对语料数据进行预处理
config.json:是配置文件,自动生成的
4 重要的API
4.1 LSTM cells部分:
cell = tf.contrib.rnn.BasicLSTMCell(size)cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout)cell = tf.contrib.rnn.MultiRNNCell([cell] * num_layers)对上一行的cell去做Dropout的,在外面裹一层DropoutWrapper
构建双层lstm网络,只是一个双层的lstm,不是双层的seq2seq
4.2 损失函数:
tf.nn.sampled_softmax_loss( weights=local_w_t,
b labels=labels, #真实序列值,每次一个
inputs=loiases=local_b,
cal_inputs, #预测出来的值,y^,每次一个
num_sampled=num_samples, #512
num_classes=self.target_vocab_size # 原始字典维度6865)
4.3 搭建seq2seq框架:
tf.contrib.legacy_seq2seq.embedding_attention_seq2seq(encoder_inputs, # tensor of input seq 30decoder_inputs, # tensor of decoder seq 30tmp_cell, #自定义的cell,可以是GRU/LSTM, 设置multilayer等num_encoder_symbols=source_vocab_size,# 编码阶段字典的维度6865num_decoder_symbols=target_vocab_size, # 解码阶段字典的维度 6865embedding_size=size, # embedding 维度,512num_heads=20, #选20个也可以,精确度会高点,num_heads就是attention机制,选一个就是一个head去连,5个就是5个头去连output_projection=output_projection,# 输出层。不设定的话输出维数可能很大(取决于词表大小),设定的话投影到一个低维向量feed_previous=do_decode,# 是否执行的EOS,是否允许输入中间cdtype=dtype)
4.4 测试部分:
self.outputs, self.losses = tf.contrib.legacy_seq2seq.model_with_buckets(
self.encoder_inputs,
self.decoder_inputs,
targets,
self.decoder_weights,
buckets,
lambda x, y: seq2seq_f(x, y, True),
softmax_loss_function=softmax_loss_function
)
4.5 评价NLP测试效果:
在nltk包里,有个接口叫bleu,可以评估测试结果,NITK是个框架
from nltk.translate.bleu_score import sentence_bleu
score = sentence_bleu(
references,#y值
list(ret),#y^
weights=(1.0,)#权重为1
)
4.6 梯度截断,防止梯度爆炸
clipped_gradients, norm = tf.clip_by_global_norm(gradients,max_gradient_norm)
tf.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None)
通过权重梯度的总和的比率来截取多个张量的值。t_list是梯度张量, clip_norm是截取的比率,这个函数返回截取过的梯度张量和一个所有张量的全局范数
4.7 模型保存
tf.train.Saver(tf.global_variables(), write_version=tf.train.SaverDef.V2)
5 重点和难点
5.1 函数
def get_batch_data(self, bucket_dbs, bucket_id):
def get_batch(self, bucket_dbs, bucket_id, data):
def step(self,session,encoder_inputs,decoder_inputs,decoder_weights,bucket_id):
5.2 变量
batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], []
6 相关参数
model = s2s_model.S2SModel(data_utils.dim, # 6865,编码器输入的语料长度data_utils.dim, # 6865,解码器输出的语料长度buckets, # buckets就是那四个桶,data_utils.buckets,直接在data_utils写的一个变量,就能直接被点出来FLAGS.size, # 隐层神经元的个数512FLAGS.dropout, # 隐层dropout率,dropout不是lstm中的,lstm的几个门里面不需要dropout,没有那么复杂。是隐层的dropoutFLAGS.num_layers, # lstm的层数,这里写的是2FLAGS.max_gradient_norm, # 5,截断梯度,防止梯度爆炸FLAGS.batch_size, # 64,等下要重新赋值,预测就是1,训练就是64FLAGS.learning_rate, # 0.003FLAGS.num_samples, # 512,用作负采样forward_only, #只传一次dtype){"__author__": "qhduan@memect.co","buckets": [[5, 15],[10, 20],[20, 30],[40, 50]],"size": 512,/*s2s lstm单元出来之后的,连的隐层的number unit是512*/"depth": 4,"dropout": 0.8,"batch_size": 512,/*每次往里面放多少组对话对,这个是比较灵活的。如果找一句话之间的相关性,batch_size就是这句话里面的字有多少个,如果要找上下文之间的对话,batch_size就是多少组对话*/"random_state": 0,"learning_rate": 0.0003,/*总共循环20次*/"epoch": 20,"train_device": "/gpu:0","test_device": "/cpu:0"}
7 桶机制
7.1 处理数据集
语料库长度桶结构
(5, 10): 5问题长度,10回答长度
每个桶中对话数量,一问一答为一次完整对话
Analysis
(1) 设定4个桶结构,即将问答分成4个部分,每个同种存放对应的问答数据集[87, 69, 36,
8]四个桶中分别有87组对话,69组对话,36组对话,8组对话;
(2) 训练词数据集符合桶长度则输入对应值,不符合桶长度,则为空;
(3) 对话数量占比:[0.435, 0.78, 0.96, 1.0];
7.2 词向量处理seq2seq
获取问答及答案权重
参数:
- data: 词向量列表,如[[[4,4],[5,6,8]]]
- bucket_id: 桶编号,值取自桶对话占比
步骤:
- 问题和答案的数据量:桶的话数buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]
- 生成问题和答案的存储器
- 从问答数据集中随机选取问答
- 问题末尾添加PAD_ID并反向排序
- 答案添加GO_ID和PAD_ID
- 问题,答案,权重批量数据
- 批量问题
- 批量答案
- 答案权重即Attention机制
- 若答案为PAD则权重设置为0,因为是添加的ID,其他的设置为1
Analysis
-
(1) 对问题和答案的向量重新整理,符合桶尺寸则保持对话尺寸,若不符合桶设定尺寸,则进行填充处理,
问题使用PAD_ID填充,答案使用GO_ID和PAD_ID填充; -
(2) 对问题和答案向量填充整理后,使用Attention机制,对答案进行权重分配,答案中的PAD_ID权重为0,其他对应的为1;
-
(3) get_batch()处理词向量;返回问题、答案、答案权重数据;
返回结果如上结果:encoder_inputs, decoder_inputs, answer_weights.
7.3 处理问答及答案权重
参数:session: tensorflow 会话.encoder_inputs: 问题向量列表decoder_inputs: 回答向量列表answer_weights: 答案权重列表bucket_id: 桶编号which bucket of the model to use.forward_only: 前向或反向运算标志位
返回:一个由梯度范数组成的三重范数(如果不使用反向传播,则为无)。平均困惑度和输出
Analysis
-
(1) 根据输入的问答向量列表,分配语料桶,处理问答向量列表,并生成新的输入字典(dict), input_feed = {};
-
(2) 输出字典(dict), ouput_feed = {},根据是否使用反向传播获得参数,使用反向传播,
output_feed存储更新的梯度范数,损失,不使用反向传播,则只存储损失; -
(3) 最终的输出为分两种情况,使用反向传播,返回梯度范数,损失,如反向传播不使用反向传播,
返回损失和输出的向量(用于加载模型,测试效果),如前向传播;
7.4 训练&保存模型
步骤:
-
检查是否有已存在的训练模型
-
有模型则获取模型轮数,接着训练
-
没有模型则从开始训练
-
一直训练,每过一段时间保存一次模型
-
如果模型没有得到提升,减小learning rate
-
保存模型
-
使用测试数据评估模型
global step: 500, learning rate: 0.5, loss: 2.574068747580052 bucket id: 0, eval ppx: 14176.588030763274 bucket id: 1, eval ppx: 3650.0026667220773 bucket id: 2, eval ppx: 4458.454110999805 bucket id: 3, eval ppx: 5290.083583183104
7.5 载入模型&测试
(1) 该聊天机器人使用bucket桶结构,即指定问答数据的长度,匹配符合的桶,在桶中进行存取数据;
(2) 该seq2seq模型使用Tensorflow时,未能建立独立标识的图结构,在进行后台封装过程中出现图为空的现象;
从main函数进入test()方法。先去内存中加载训练好的模型model,这部分最耗时,改batch_size为1,传入相关的参数。开始输入一个句子,并将它读进来,读进来之后,按照桶将句子分,按照模型输出,然后去查字典。接着在循环中输入上句话,找对应的桶。然后拿到的下句话的每个字,找概率最大的那个字的index的id输出。get_batch_data(),获取data [('天气\n', '')],也就是问答对,但是现在只有问,没有答get_batch()获取encoder_inputs=1*10,decoder_inputs=1*20 decoder_weights=1*20step()获取预测值output_logits,
8 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:

软件杯 题目:基于深度学习的中文对话问答机器人
文章目录 0 简介1 项目架构2 项目的主要过程2.1 数据清洗、预处理2.2 分桶2.3 训练 3 项目的整体结构4 重要的API4.1 LSTM cells部分:4.2 损失函数:4.3 搭建seq2seq框架:4.4 测试部分:4.5 评价NLP测试效果:4.6 梯度截断…...

UI学习笔记(一)
UI学习 一:UIView基础frame属性隐藏视图对象:UIView的层级关系 二:UIWindow对象三:UIViewController基础UIViewController使用 四:定时器与视图移动五:UISwitch控件六:滑动条和进度条七…...

【C语言训练题库】扫雷->简单小游戏!
🔥博客主页🔥:【 坊钰_CSDN博客 】 欢迎各位点赞👍评论✍收藏⭐ 目录 1. 题目 2. 解析 3. 代码 4. 小结 1. 题目 小sun上课的时候非常喜欢玩扫雷。他现小sun有一个初始的雷矩阵,他希望你帮他生成一个扫雷矩阵。 扫雷…...

WMS仓储管理系统高效驱动制造企业物料管理
在现代制造业的快速发展中,仓储管理作为供应链的核心环节,其效率直接影响到企业的生产力和市场竞争力。随着科技的进步,实施WMS仓储管理系统逐渐成为推动仓储管理向智能化转型的关键力量。本文将深入探讨WMS仓储管理系统如何以创新的方式驱动…...
python使用appium打开程序后,为什么没有操作后程序就自动退出了
当使用Appium打开应用程序并在没有执行任何操作后它自动退出,这可能是由于几个不同的原因。以下是一些可能的原因和相应的解决方案: 应用程序的默认行为: 有些应用程序在启动后如果没有用户交互,可能会因为超时或其他逻辑而自动关…...
MacBook M系列芯片安装php8.2
适用于M1\M2\M3等系列的MacBook,记录下安装过程 安装brew 打开终端,执行如下命令: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"安装zsh(非必须) …...

OlSoul系统调校程序v2024.06.05
软件介绍 OlSoul是一款能够适配用于Win各个系统的系统调校软件,OlSoul内置有众多调校功能可以直接使用,如有启用无线网络功能、启用打印机功能、系统快速休眠与休眠开关、快捷方式小箭头去除功能等,具体的调校功能多达几十项,可自…...
图像特征提取 python
1. 边缘检测 (Edge Detection) 1.1 Sobel 算子 Sobel 算子是一种边缘检测算子,通过计算图像梯度来检测边缘。 import cv2 import numpy as np# 读取图像 image cv2.imread(image.jpg, 0)# 应用 Sobel 算子 sobel_x cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize5)…...

width: 100%和 width: 100vw这两种写法有什么区别
width: 100%; 和 width: 100vw; 是两种不同的 CSS 写法,它们在实际应用中会有不同的效果。以下是这两种写法的主要区别: width: 100%; 定义:将元素的宽度设置为其包含块(通常是父元素)宽度的 100%。效果:元…...
如何在另一台电脑上使用相同的Python环境和依赖包
如果您想在另一台电脑上使用相同的Python环境和依赖包,有几种方法可以实现: 使用requirements.txt: 在您当前的虚拟环境中,您可以使用pip freeze > requirements.txt命令生成一个包含所有已安装包及其版本的文件。然后&#x…...
Vue3 响应式 API:工具函数(一)
isRef() isRef 是一个简单的工具函数,它接受一个参数并返回一个布尔值,指示该参数是否是一个由 ref 创建的响应式引用。 在某些情况下,你可能需要编写一些通用逻辑或函数,这些逻辑或函数需要处理不同类型的响应式数据(…...
开发常用软件
开发相关 代码编译 Visual Studio 2019 Visual Studio 2022 代码测试工具 LINQPad Premium 5 LINQPad 7 打包工具 Advanced Installer 反编译工具 ILSpy dnSpy spy 数据库相关 SQLite Expert Professional 5 DLL扫描工具 depends 界面设计 SvgToXaml Materi…...

conntrack如何限制您的k8s网关
1.1 conntrack 介绍 对于那些不熟悉的人来说,conntrack简单来说是Linux内核的一个子系统,它跟踪所有进入、出去或通过系统的网络连接,允许它监控和管理每个连接的状态,这对于诸如NAT(网络地址转换)、防火墙和保持会话连续性等任务至关重要。它作为Netfilter的一部分运行,…...

SwiftUI六组合复杂用户界面
代码下载 应用的首页是一个纵向滚动的地标类别列表,每一个类别内部是一个横向滑动列表。随后将构建应用的页面导航,这个过程中可以学习到如果组合各种视图,并让它们适配不同的设备尺寸和设备方向。 下载起步项目并跟着本篇教程一步步实践&a…...

高考分数查询结果自动推送至微信
又是一年高考时,祝各位学子金榜题名,天遂人愿! 在您阅读以下内容时,请注意:各省查分API接口可能不相同,本人仅就技术层面谈谈, 纯属无聊,因为实用意义不大,毕竟一年一次,…...

flask_sqlalchemy时间缓存导致datetime.now()时间不变问题
问题是这样的,项目在本地没什么问题,但是部署到服务器过一阵子发现,这个时间会在某一刻定死不变。 重启uwsgi后,发现第一条数据更新到了目前最新时间,过了一会儿再次发送也变了时间,但是再过几分钟再发就会…...

使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
教程简述 在本教程中,您将学习在阿里云交互式建模平台PAI-DSW x Free Prompt Editing(CVPR2024中选论文算法)图像编辑算法,开发个人AIGC绘图小助理,实现文本驱动的图像编辑功能单卡即可完成AIGC图片风格变化、背景变化…...

Nginx03-动态资源和LNMP介绍与实验、自动索引模块、基础认证模块、状态模块
目录 写在前面Nginx03案例1 模拟视频下载网站自动索引autoindex基础认证auth_basic模块状态stub_status模块模块小结 案例2 动态网站(部署php代码)概述常见的动态网站的架构LNMP架构流程数据库Mariadb安装安全配置基本操作 PHP安装php修改配置文件 Nginx…...
山东大学软件学院项目实训-创新实训-基于大模型的旅游平台(二十九)- 微服务(9)
目录 12. ElastisSearch 12.1 安装es 12.2 部署kibana 12.2.1 部署 12.2. 2 DevTools 12.3 索引库操作 12.3.1 mapping映射 12.3.2 创建索引库 12.3.3 查询索引库 12.3.4 删除索引库 12.3.5 修改索引库 12.4 文档操作 12.4.1 新增文档 12.4.2 查询文档 12.4.3 删…...

Matplotlib常见图汇总
Matplotlib是python的一个画图库,便于数据可视化。 安装命令 pip install matplotlib 常用命令: 绘制直线,连接两个点 import matplotlib.pyplot as plt plt.plot([0,5],[2,4]) plt.show() 运行结果如下: 多条线:…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...