当前位置: 首页 > news >正文

Three.js中的Raycasting技术:实现3D场景交互事件的Raycaster详解

前言

Web开发中,Three.js是一个极为强大的库,它让开发者能够轻松地在浏览器中创建和展示3D图形。随着3D技术在网页设计、游戏开发、数据可视化等领域的广泛应用,用户与3D场景的交互变得日益重要。而要实现这种交互,一个核心的技术就是光线投射(Raycasting)。通过Three.js提供的Raycaster类,我们可以检测鼠标或触摸事件在3D空间中的对应位置,进而实现点击、悬停等交互效果。本文将深入探讨如何使用Three.jsRaycaster来实现3D场景的交互事件。
光线投射原理及其属性介绍

通过Raycaster拾取模型进行轮廓高亮走这里>>>

什么是Raycasting?

Raycasting是一种计算机图形学技术,用于确定从一个点(通常是观察者的位置或屏幕上的某一点)发射出的光线与场景中物体的交点。在3D应用中,这一技术常用于模拟光照效果、碰撞检测以及用户交互。简单来说,当你在屏幕上点击或触摸时,Three.js会从该点向场景发射一条虚拟的射线,然后检查这条射线与场景中哪些对象相交,从而判断用户点击了哪个对象。
Three.js中的Raycasting技术:实现3D场景交互事件的Raycaster详解
这个类用于进行raycasting(光线投射)。 光线投射用于进行鼠标拾取(在三维空间中计算出鼠标移过了什么物体)。

Three.js中的Raycaster

Three.js中,Raycaster类是实现这一功能的关键。它允许你创建一个射线,并提供方法来检测这个射线与场景中对象的交点。以下是使用Raycaster的基本步骤:

Raycaster实例解释

new THREE.Raycaster(origin, direction, near, far)

参数说明:

origin - 光线投射的原点,Vector3类型。
direction - 射线的方向,Vector3类型。
near - 投射近点,不能为负值,应该小于far,其默认值为0
far 投射远点,不能小于near,其默认值为无穷大。

射线交叉对象

创建的光线投射对象有一个intersectObject()方法用来获取射线交叉的对象,使用方法如下

const raycaster = new THREE.Raycaster(origin, direction, near, far)
const arr= raycaster.intersectObjects(object, recursive,optionalTarget)

raycaster.intersectObjects()参数

object - 要检查的是否与射线相交的对象,Object3D类型。
recursive - 是否检查所有后代,可选默认为falseBoolean类型。
optionalTarget - 可选参数,放置结果的目标数组。Array类型。若使用这个参数返回检查结果则在每次调用之前必须清空这个数组。

raycaster.intersectObjects()的返回值

Three.js中的Raycasting技术:实现3D场景交互事件的Raycaster详解

distance - 射线投射原点和相交部分之间的距离。
point - 相交部分的坐标。
face - 相交的面。
faceIndex - 相交的面的索引。
object - 相交的物体。
uv - 相交部分的点的UV坐标。

光线投射示例

Three.js中的Raycasting技术:实现3D场景交互事件的Raycaster详解

示例步骤

步骤一、创建射线

const raycaster = new THREE.Raycaster()

步骤二、用一个二维向量保存鼠标点击画布上的位置

const mouse = new THREE.Vector2(1, 1)

步骤三、监听窗口事件,将x,y轴归一化坐标,通过摄像机和鼠标的位置更新色线,计算物体和射线的焦点能不能碰到物体,碰到物体后随机改变射线照射物体的颜色。

window.addEventListener("click",(e)=>{//设置鼠标向量的x,y值,将XY轴归一化,X从-1到1,Y为从-1到1,所以除以2mouse.x = (e.clientX/window.innerWidth)*2-1mouse.y = -(e.clientY/window.innerHeight)*2+1// 通过摄像机和鼠标的位置,更新射线raycaster.setFromCamera(mouse,this.camera)//计算物体和射线的焦点能不能碰到物体const intersects = raycaster.intersectObjects([sphere1,sphere2,sphere3])if(intersects.length>0){intersects[0].object.material.color.set(this.color16())}
})
代码解释:
raycaster.setFromCamera(mouse,this.camera)

每次渲染循环中,你需要更新射线的起点(通常是相机的位置)和方向(通常是基于鼠标坐标计算出的向量):这里,mouse是归一化设备坐标(即范围在(-1, -1)(1, 1)之间的坐标),可以通过监听鼠标或触摸事件并使用THREE.Vector2和renderer.domElement.clientWidth/Height进行转换得到。

const intersects = raycaster.intersectObjects(scene.children, true);

使用raycaster.intersectObjects()方法来检测射线与场景中对象的交点:此方法返回一个数组,包含了所有与射线相交的对象信息。如果数组不为空,说明有对象被选中,你可以根据需要处理这些交点信息。

什么是归一化坐标:归一化坐标,是一个二维坐标,仅有X/Y两个维度,且X和Y的取值范围均为[-1, 1],坐标原点位于three.js所创建的canvas的中心处。 ​
Three.js中的Raycasting技术:实现3D场景交互事件的Raycaster详解
归一化坐标公式:

mouse.x = ((event.clientX - container.getBoundingClientRect().left) / container.getBoundingClientRect().width) * 2 - 1;
mouse.y = - ((event.clientY - container.getBoundingClientRect().top) / container.getBoundingClientRect().height) * 2 + 1;

以上示例完整代码:

<template><div id="container"></div>
</template><script>
import * as THREE from 'three'
// webGL兼容
import WebGL from 'three/examples/jsm/capabilities/WebGL.js';
import { GUI } from 'three/examples/jsm/libs/lil-gui.module.min.js';
// 轨道控制器
import { OrbitControls } from "three/examples/jsm/controls/OrbitControls.js"
//导入RGBRload加载器
import { RGBELoader } from  "three/examples/jsm/loaders/RGBELoader.js"
//导入场景模型加载器
import {GLTFLoader} from "three/examples/jsm/loaders/GLTFLoader.js"
//导入模型解压器
import {DRACOLoader} from "three/examples/jsm/loaders/DRACOLoader.js"
export default {name: 'HomeView',components: {},mounted(){this.init()},data(){return {camera: null,  //相机对象scene: null,  //场景对象renderer: null,  //渲染器对象mesh: null,  //网格模型对象Meshmesh2:null,controls:null, //轨道控制器material2:null, //父元素planeMesh:null, //平面rgbeLoacer:null,}},methods:{//随机生成十六进制颜色color16(){//十六进制颜色随机var r = Math.floor(Math.random()*256);var g = Math.floor(Math.random()*256);var b = Math.floor(Math.random()*256);var color = '#'+r.toString(16)+g.toString(16)+b.toString(16);return color;},init(){let container = document.body;//创建一个场景this.scene = new THREE.Scene()//透视摄像机this.camera = new THREE.PerspectiveCamera(75,window.innerWidth/window.innerHeight,0.1,700)//创建渲染器this.renderer = new THREE.WebGLRenderer();//渲染器尺寸this.renderer.setSize( window.innerWidth,  window.innerHeight );    // 创建三个球const sphere1 = new THREE.Mesh(new THREE.SphereGeometry(1,32,32),new THREE.MeshBasicMaterial({color:0x00ff00}))sphere1.position.x = -3this.scene.add(sphere1)const sphere2 = new THREE.Mesh(new THREE.SphereGeometry(1,32,32),new THREE.MeshBasicMaterial({color:0xff0000}))sphere2.position.x = 0this.scene.add(sphere2)const sphere3 = new THREE.Mesh(new THREE.SphereGeometry(1,32,32),new THREE.MeshBasicMaterial({color:0x0000ff}))      sphere3.position.x = 3this.scene.add(sphere3)//创建射线const raycaster = new THREE.Raycaster()//用一个二维向量保存鼠标点击画布上的位置const mouse = new THREE.Vector2(1, 1)   window.addEventListener("click",(e)=>{//设置鼠标向量的x,y值,将XY轴归一化,X从-1到1,Y为从-1到1,所以除以2mouse.x = (e.clientX/window.innerWidth)*2-1mouse.y = -(e.clientY/window.innerHeight)*2+1console.log(mouse.x,mouse.y)// 通过摄像机和鼠标的位置,更新涉嫌raycaster.setFromCamera(mouse,this.camera)//计算物体和射线的焦点能不能碰到物体const intersects = raycaster.intersectObjects([sphere1,sphere2,sphere3])console.log("intersects",intersects)if(intersects.length>0){intersects[0].object.material.color.set(this.color16())}})this.scene.background=new THREE.Color(0x999999)// 设置相机位置this.camera.position.z = 15;   this.camera.position.y =2;  this.camera.position.x = 2; // 看的方向 this.camera.lookAt(0,0,0)//添加世界坐标辅助器const axesHelper = new THREE.AxesHelper(3) this.scene.add( axesHelper );//添加轨道控制器this.controls = new OrbitControls(this.camera,this.renderer.domElement)//添加阻尼带有惯性this.controls.enableDamping = true//设置阻尼系数this.controls.dampingFactor = 0.05//元素中插入canvas对象container.appendChild(this.renderer.domElement); if ( WebGL.isWebGLAvailable() ) {this.animate();} else {const warning = WebGL.getWebGLErrorMessage();document.getElementById( document.body ).appendChild( warning );}},//旋转起来animate() {this.controls.update()requestAnimationFrame( this.animate );// this.mesh.rotation.x += 0.01;// this.mesh.rotation.y += 0.01;this.renderer.render( this.scene, this.camera );}}
}
</script>

总结

通过Three.jsRaycaster,我们能够以直观且高效的方式实现3D场景中的交互事件。无论是简单的点击反馈,还是复杂的拖拽操作,Raycasting都是构建互动式3D体验不可或缺的一部分。掌握这项技术,无疑能极大提升你的3D应用或游戏的用户体验。希望本文能为你开启探索Three.js交互世界的大门,让你的3D项目更加生动有趣。

相关文章:

Three.js中的Raycasting技术:实现3D场景交互事件的Raycaster详解

前言 在Web开发中&#xff0c;Three.js是一个极为强大的库&#xff0c;它让开发者能够轻松地在浏览器中创建和展示3D图形。随着3D技术在网页设计、游戏开发、数据可视化等领域的广泛应用&#xff0c;用户与3D场景的交互变得日益重要。而要实现这种交互&#xff0c;一个核心的技…...

5 分钟内构建一个简单的基于 Python 的 GAN

文章目录 一、说明二、代码三、训练四、后记 一、说明 生成对抗网络&#xff08;GAN&#xff09;因其能力而在学术界引起轩然大波。机器能够创作出新颖、富有灵感的作品&#xff0c;这让每个人都感到敬畏和恐惧。因此&#xff0c;人们开始好奇&#xff0c;如何构建一个这样的网…...

智能硬件产品中常用的参数存储和管理方案

一、有哪些参数需要管理? 在智能硬件产品中,一般有三类数据需要存储并管理: 1. 系统设置数据 系统设置数据是指产品自身正常工作所依赖的一些参数。 这类数据的特点:只能在生产过程中修改,出厂后用户无权限修改。 比如:产品SN、产品密钥/token/license、传感器校准值…...

SwiftUI中Mask修饰符的理解与使用

Mask是一种用于控制图形元素可见性的图形技术&#xff0c;使用给定视图的alpha通道掩码该视图。在SwiftUI中&#xff0c;它类似于创建一个只显示视图的特定部分的模板。 Mask修饰符的定义&#xff1a; func mask<Mask>(alignment: Alignment .center,ViewBuilder _ ma…...

全光网络与传统网络架构的对比分析

随着信息技术的飞速发展&#xff0c;网络已经成为我们日常生活中不可或缺的一部分。在这个信息爆炸的时代&#xff0c;全光网络和传统网络架构作为两种主流的网络技术&#xff0c;各有其特点和适用范围。本文将对这两种网络架构进行详细的对比分析&#xff0c;帮助读者更好地了…...

stack overflow复现

当你在内存的栈中&#xff0c;存放了太多元素&#xff0c;就有可能在造成 stack overflow这个问题。 今天看看如何复现这个问题。 下图&#xff0c;是我写的程序&#xff0c;不断的创造1KB的栈&#xff0c;来看看执行了多少次&#xff0c;无限循环。 最后结果是7929kB时, 发…...

mybatis使用笔记

文章目录 打印sql日志mybatis-config.xml方式application.yml里面配置配置类配置方式 其他扫描方式官网文档 mybatis用了那么久&#xff0c;实际一直不明白&#xff0c;做个笔记吧。 打印sql日志 实测&#xff0c;mybatis-config.xml方式好用(记得注掉yml里的相关配置) mybat…...

学习笔记——路由网络基础——路由概述

一、路由概述 1、路由定义与作用 路由(routing)是指导报文转发路径信息&#xff0c;通过路由可以确认转发IP报文的路径。 路由&#xff1a;是指路由器从一个接口上收到数据包&#xff0c;根据数据包的目的地址进行定向并转发到另一个接口的过程。 路由(routing)的定义是指分…...

在量子计算时代,大数据技术将面临哪些挑战和机遇?

在量子计算时代&#xff0c;大数据技术将面临以下挑战和机遇&#xff1a; 挑战&#xff1a; 处理速度&#xff1a;量子计算机具有极高的计算速度&#xff0c;大数据技术需要适应和充分利用这种速度。现有的大数据算法和架构可能需要重新设计和优化&#xff0c;以充分发挥量子计…...

怎么换自己手机的ip地址

在互联网时代&#xff0c;IP地址已经成为了我们数字身份的一部分。无论是浏览网页、下载文件还是进行在线交流&#xff0c;我们的IP地址都在默默发挥着作用。然而&#xff0c;有时出于安全或隐私保护的考虑&#xff0c;我们可能需要更换手机的IP地址。那么&#xff0c;如何轻松…...

搭建 Langchain-Chatchat 详细过程

前言 本文参考官网和其他多方教程&#xff0c;将搭建 Langchain-Chatchat 的详细步骤进行了整理&#xff0c;供大家参考。 我的硬件 4090 显卡win10 专业版本 搭建环境使用 chatglm2-6b 模型 1. 创建虚拟环境 chatchat &#xff0c;python 3.9 以上 conda create -n chat…...

C++期末复习

目录 1.基本函数 2.浅拷贝和深拷贝 3.初始化列表 4.const关键字的使用 5.静态成员变量和成员函数 6.C对象模型 7.友元 8.自动类型转换 9.继承 1.基本函数 &#xff08;1&#xff09;构造函数&#xff0c;这个需要注意的就是我们如果使用类名加括号&#xff0c;括号里面…...

2005-2022年各省居民人均消费支出数据(无缺失)

2005-2022年各省居民人均消费支出数据&#xff08;无缺失&#xff09; 1、时间&#xff1a;2005-2022年 2、来源&#xff1a;国家统计局、统计年鉴 3、指标&#xff1a;全体居民人均消费支出 4、范围&#xff1a;31省 5、缺失情况&#xff1a;无缺失 6、指标解释 居民人…...

swaggerHole:针对swaggerHub的公共API安全扫描工具

关于swaggerHole swaggerHole是一款针对swaggerHub的API安全扫描工具&#xff0c;该工具基于纯Python 3开发&#xff0c;可以帮助广大研究人员检索swaggerHub上公共API的相关敏感信息&#xff0c;整个任务过程均以自动化形式实现&#xff0c;且具备多线程特性和管道模式。 工具…...

【Rust】——面向对象设计模式的实现

&#x1f3bc;个人主页&#xff1a;【Y小夜】 &#x1f60e;作者简介&#xff1a;一位双非学校的大二学生&#xff0c;编程爱好者&#xff0c; 专注于基础和实战分享&#xff0c;欢迎私信咨询&#xff01; &#x1f386;入门专栏&#xff1a;&#x1f387;【MySQL&#xff0…...

C#朗读语音

最近有个需求&#xff0c;需要在C#程序发生异常时候&#xff0c;朗读文字&#xff0c;C#提供了.net framework可以提供简单的语音朗读功能。 引入依赖 using System.Media; using System.Speech.Synthesis; using System.Runtime.InteropServices; //报警音量 SystemSounds.…...

c++ 简单的日志类 CCLog

此日志类&#xff0c;简单地实现了向标准输出控制台和文件输出日志信息的功能&#xff0c;并能在这两者之间进行切换输出&#xff0c;满足输出日志的不同需求。 代码如下&#xff1a; /** CCLog.h* c_common_codes** Created by xichen on 12-1-12.* Copyright 2012 cc_te…...

一文读懂 Compose 支持 Accessibility 无障碍的原理

前言 众所周知&#xff0c;Compose 作为一种 UI 工具包&#xff0c;向开发者提供了实现 UI 的基本功能。但其实它还默默提供了很多其他能力&#xff0c;其中之一便是今天需要讨论的&#xff1a;Android 特色的 Accessibility 功能。 采用 Compose 搭建的界面&#xff0c;完美…...

Redis到底支不支持事务?

文章目录 一、概述二、使用1、正常执行&#xff1a;2、主动放弃事务3、全部回滚:4、部分支持事务:5、WATCH: 三、事务三阶段四、小结 redis是支持事务的&#xff0c;但是它与传统的关系型数据库中的事务是有所不同的 一、概述 概念: 可以一次执行多个命令&#xff0c;本质是一…...

美颜相机「BeautyCam」v12.0.80 祛广告解索会员版(美妆相机功能,展现女神魅力)

软件介绍 美颜相机&#xff0c;一款由知名移动互联网企业Meitu Inc.开发的移动设备照片编辑与美化应用&#xff0c;起初主要针对娱乐消费市场&#xff0c;随后集成了商业营销功能。目前&#xff0c;它已跻身全球最受欢迎的手机摄影应用程序之列。在中国&#xff0c;美颜相机和…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...

自定义线程池1.2

自定义线程池 1.2 1. 简介 上次我们实现了 1.1 版本&#xff0c;将线程池中的线程数量交给使用者决定&#xff0c;并且将线程的创建延迟到任务提交的时候&#xff0c;在本文中我们将对这个版本进行如下的优化&#xff1a; 在新建线程时交给线程一个任务。让线程在某种情况下…...

iOS 项目怎么构建稳定性保障机制?一次系统性防错经验分享(含 KeyMob 工具应用)

崩溃、内存飙升、后台任务未释放、页面卡顿、日志丢失——稳定性问题&#xff0c;不一定会立刻崩&#xff0c;但一旦积累&#xff0c;就是“上线后救不回来的代价”。 稳定性保障不是某个工具的功能&#xff0c;而是一套贯穿开发、测试、上线全流程的“观测分析防范”机制。 …...