当前位置: 首页 > news >正文

Postgresql源码(135)生成执行计划——Var的调整set_plan_references

1 总结

  • set_plan_references主要有两个功能:
    • 拉平:生成拉平后的RTE列表(add_rtes_to_flat_rtable)。
    • 调整:调整前每一层计划中varno的引用都是相对于本层RTE的偏移量。放在一个整体计划后,需要指向一个统一的RTE列表,所以需要把varno调整下指向拉平后的RTE表。
    • 例如下面计划中,RTE记录了6张表:
      • 1 → `{rtekind = RTE_RELATION, relid = 16656, inh = false, relkind = 114 ‘r’} -> student
      • 2 → `{rtekind = RTE_RELATION, relid = 16671, inh = false, relkind = 114 ‘r’} -> score
      • 3 → `{rtekind = RTE_JOIN, relid = 0, inh = false, relkind = 0 } -> {score join student}
      • 4 → `{rtekind = RTE_RELATION, relid = 16661, inh = false, relkind = 114 ‘r’} -> course
      • 5 → `{rtekind = RTE_JOIN, relid = 0, inh = false, relkind = 0 } -> {被优化掉的join course}
    • Result节点的第一列是STUDENT.sname,他的varno一开始是1,varattno是2,显然他不应该直接引用RTE中的某一张表,因为Result节点的数据应该使用下面SORT节点中取出来的,所以:
      • varno被调整为-2(表示引用OUTTER节点也就是LEFT树返回的结果)
      • varattno被调整1,表示从结果中拿第一列。
explain
SELECT STUDENT.sname, random(), SCORE.degree
FROM STUDENT
LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
ORDER BY STUDENT.sno;QUERY PLAN
------------------------------------------------------------------------------------Result  (cost=182.67..213.27 rows=2040 width=54)->  Sort  (cost=182.67..187.77 rows=2040 width=46)Sort Key: student.sno->  Hash Right Join  (cost=34.75..70.53 rows=2040 width=46)Hash Cond: (score.sno = student.sno)->  Seq Scan on score  (cost=0.00..30.40 rows=2040 width=12)->  Hash  (cost=21.00..21.00 rows=1100 width=42)->  Seq Scan on student  (cost=0.00..21.00 rows=1100 width=42)

上面用例经过set_plan_references调整前后的完整例子:
在这里插入图片描述

2 数据结构

PlannerInfo

当前查询优化的状态,包含了当前查询的所有信息:

  • 当前查询的目标列表(target list)
  • 子句(例如,WHERE、GROUP BY、ORDER BY 等)
  • 范围表(range table)
  • 可用的索引信息
  • 统计信息
  • 子查询和参数信息
  • 优化器的各种临时数据和结果

PlannerGlobal

全局结构,包含了跨多个查询级别的信息。例如一个包含子查询或CTE的查询中,每个子查询都会有自己的 PlannerInfo结构,会共享同一个PlannerGlobal。包含了:

  • 全局范围表(finalrtable)
  • 全局子计划列表
  • 全局初始化计划列表
  • 全局参数表达式列表
  • 重写规则和其他全局状态信息

varno宏

#define    INNER_VAR		(-1)	/* reference to inner subplan */
#define    OUTER_VAR		(-2)	/* reference to outer subplan */
#define    INDEX_VAR		(-3)	/* reference to index column */
#define    ROWID_VAR		(-4)	/* row identity column during planning */

3 set_plan_references

1 计算全局flat_rtable

set_plan_references → add_rtes_to_flat_rtable

首先把引用的rtable全部拉平到一个级别,重新排列RTE。

具体在PlannerGlobal中构造全局范围表finalrtable,所有子PlannerInfo共享的一套RTE。

	p *root->glob->finalrtable
$7 = {type = T_List, length = 5, max_length = 5, elements = 0x3085520, initial_elements = 0x3085520}

add_rtes_to_flat_rtable后生成五个RTE:

  • RangeTblEntry {rtekind = RTE_RELATION, relid = 16656, inh = false, relkind = 114 'r'}
  • RangeTblEntry {rtekind = RTE_RELATION, relid = 16671, inh = false, relkind = 114 'r'}
  • RangeTblEntry {rtekind = RTE_JOIN, relid = 0, inh = false, relkind = 0}
  • RangeTblEntry {rtekind = RTE_RELATION, relid = 16661, inh = false, relkind = 114 'r'}
  • RangeTblEntry {rtekind = RTE_JOIN, relid = 0, inh = false, relkind = 0}

PlannerInfo→PlannerGlobal:

2 开始修正RTE的引用

set_plan_references → set_plan_refs

2.1 处理Result

  • set_plan_refs

    • case T_Result: 处理result子树
    • plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset); 递归处理左树
    • plan->righttree = set_plan_refs(root, plan->righttree, rtoffset); 递归处理右树
  • 根据内层的sort节点,重新排列result节点的三个var的varno和varattno,result已经是最外层节点了,当前使用到的var还是从sort节点继承的,需要修复下。

处理前 vs 处理后
在这里插入图片描述

set_plan_refs处理T_Result节点:

set_plan_refs......case T_Result:Result     *splan = (Result *) plan;if (splan->plan.lefttree != NULL)set_upper_references(root, plan, rtoffset);......// subplan 是 SORT节点// subplan->targetlist 中返回三列:STUDENT.sname, SCORE.degree,  STUDENT.sno// 注意缺了一列random函数subplan_itlist = build_tlist_index(subplan->targetlist);	
  • subplan->targetlist
    • varno = 1, varattno = 2, vartype = 1043
    • varno = 2, varattno = 3, vartype = 23
    • varno = 1, varattno = 1, vartype = 23
  • subplan_itlist
    • subplan_itlist->tlist = subplan->targetlist
    • subplan_itlist->vars[0] = {varno = 1, varattno = 2, resno = 1, varnullingrels = 0x0}
    • subplan_itlist->vars[1] = {varno = 2, varattno = 3, resno = 2, varnullingrels = ...}
    • subplan_itlist->vars[2] = {varno = 1, varattno = 1, resno = 3, varnullingrels = 0x0}
				foreach(l, plan->targetlist)...newexpr = fix_upper_expr(...)...// 计算完成plan->targetlist = output_targetlist;
  • output_targetlist
    • expr = 0x308f0c8, resno = 1, resname = 0x2f4d670 "sname"
      • varno = OUTER_VAR = -2, varattno = 1, vartype = 1043
    • expr = 0x308f1b8, resno = 2, resname = 0x2f4d7e8 "random"
      • funcid = 1598, funcresulttype = 701, funcretset = false
    • expr = 0x308f258, resno = 3, resname = 0x2f4d928 "degree"
      • varno = OUTER_VAR = -2, varattno = 2, vartype = 23
    • expr = 0x308f2f8, resno = 4, resname = 0x0, ressortgroupref = 1
      • varno = OUTER_VAR = -2, varattno = 3, vartype = 23

2.2 处理SORT

  • set_plan_refs
    • case T_Sort: 处理sort子树set_dummy_tlist_references
    • plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset); 递归处理左树
    • plan->righttree = set_plan_refs(root, plan->righttree, rtoffset); 递归处理右树

排序只需要引用下面一层的结果即可。

// These plan types don't actually bother to evaluate their
// targetlists, because they just return their unmodified input
// tuples.  Even though the targetlist won't be used by the
// executor, we fix it up for possible use by EXPLAIN (not to
// mention ease of debugging --- wrong varnos are very confusing).set_dummy_tlist_references

2.3 处理Hash Right Join

  • set_plan_refs
    • case T_HashJoin: 处理join子树set_join_references
    • plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset); 递归处理左树
    • plan->righttree = set_plan_refs(root, plan->righttree, rtoffset); 递归处理右树

在这里插入图片描述
在这里插入图片描述

4 用例

explain
SELECT STUDENT.sname, random(), SCORE.degree
FROM STUDENT
LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
ORDER BY STUDENT.sno;QUERY PLAN
------------------------------------------------------------------------------------Result  (cost=182.67..213.27 rows=2040 width=54)->  Sort  (cost=182.67..187.77 rows=2040 width=46)Sort Key: student.sno->  Hash Right Join  (cost=34.75..70.53 rows=2040 width=46)Hash Cond: (score.sno = student.sno)->  Seq Scan on score  (cost=0.00..30.40 rows=2040 width=12)->  Hash  (cost=21.00..21.00 rows=1100 width=42)->  Seq Scan on student  (cost=0.00..21.00 rows=1100 width=42)

相关文章:

Postgresql源码(135)生成执行计划——Var的调整set_plan_references

1 总结 set_plan_references主要有两个功能: 拉平:生成拉平后的RTE列表(add_rtes_to_flat_rtable)。调整:调整前每一层计划中varno的引用都是相对于本层RTE的偏移量。放在一个整体计划后,需要指向一个统一…...

Python魔法之旅专栏(导航)

目录 推荐阅读 1、Python筑基之旅 2、Python函数之旅 3、Python算法之旅 4、博客个人主页 首先,感谢老铁们一直以来对我的支持与厚爱,让我能坚持把Python魔法方法专栏更新完毕! 其次,为了方便大家查阅,我将此专栏…...

Python第二语言(五、Python文件相关操作)

目录 1. 文件编码的概念 2. 文件的读取操作 2.1 什么是文件 2.2 open()打开函数 2.3 mode常用的三种基础访问模式 2.4 文件操作及案例 3. 文件的写入操作及刷新文件:write与flush 4. 文件的追加操作 5. 文件操作的综合案例(文件备份操作&#x…...

Vue3 组合式 API:依赖注入(四)

provide() provide() 函数是用于依赖注入的一个关键部分。这个函数允许你在组件树中提供一个值或对象,使得任何子组件(无论层级多深)都能够通过 inject() 函数来访问这些值。 import { provide, ref } from vue; export default { setup(…...

Vue如何引入ElementUI并使用

Element UI详细介绍 Element UI是一个基于Vue 2.0的桌面端组件库,旨在构建简洁、快速的用户界面。由饿了么前端团队开发,提供丰富的组件和工具,帮助开发者快速构建高质量的Vue应用,并且以开放源代码的形式提供。 1. VueElementU…...

VS2019 QT无法打开 源 文件 “QTcpSocket“

VS2019 QT无法打开 源 文件 "QTcpSocket" QT5.15.2_msvc2019_64 严重性 代码 说明 项目 文件 行 禁止显示状态 错误(活动) E1696 无法打开 源 文件 "QTcpSocket" auto_pack_line_demo D:\vs_qt_project\auto_pack_line_de…...

【Golang】Map 稳定有序遍历的实现与探索:保序遍历之道

【Golang】Map 稳定有序遍历的实现与探索:保序遍历之道 大家好 我是寸铁👊 总结了一篇【Golang】Map 稳定有序遍历的实现与探索:保序遍历之道✨ 喜欢的小伙伴可以点点关注 💝 前言🍎 在计算机科学中,数据结…...

使用Nextjs学习(学习+项目完整版本)

创建项目 运行如下命令 npx create-next-app next-create创建项目中出现的各种提示直接走默认的就行,一直回车就行了 创建完成后进入到项目运行localhost:3000访问页面,如果和我下面页面一样就是创建项目成功了 整理项目 将app/globals.css里面的样式都删除,只留下最上面三…...

KUKA机器人KRC5控制柜面板LED显示

对于KUKA机器人新系列控制柜KRC5控制柜来说,其控制柜面板LED布局如下图: 其中①②③④分别为: 1、机器人控制柜处于不同状态时,LED显示如下: 2、机器人控制柜正在运行时: 3、机器人控制柜运行时出现的故障…...

为什么选择Python作为AI开发语言

为什么Python适合AI 在当前的科技浪潮中,人工智能(AI)无疑是最热门的话题之一。无论是自动驾驶、智能推荐还是自然语言处理,AI都在不断改变我们的生活。而在这场技术革命中,Python作为主要的编程语言之一,…...

【算法篇】求最长公共前缀JavaScript版本

题目描述 给你一个大小为 n 的字符串数组 strs &#xff0c;其中包含n个字符串 , 编写一个函数来查找字符串数组中的最长公共前缀&#xff0c;返回这个公共前缀。 数据范围&#xff1a; 数据范围:0<n<5000&#xff0c;0<len(strsi)< 5000 进阶:空间复杂度 O(1)&a…...

搭建RocketMQ主从异步集群

搭建RocketMQ主从异步集群 1、RocketMQ集群模式 为了追求更好的性能&#xff0c;RocketMQ的最佳实践方式都是在集群模式下完成的。RocketMQ官方提供了三种集群搭建方式&#xff1a; 2主2从异步通信方式&#xff1a;使用异步方式进行主从之间的数据复制。吞吐量大&#xff0c;…...

最大子段和问题

最大子段和问题 分数 15 全屏浏览 切换布局 作者 王东 单位 贵州师范学院 最大子段和问题。给定由n个整数组成的序列&#xff0c;求序列中子段的最大和&#xff0c;若所有整数均为负整数时定义最大子段和为0。 输入格式: 第一行输入整数个数n&#xff08;1≤n≤1000&…...

Vue3中的常见组件通信之mitt

Vue3中的常见组件通信之mitt 概述 ​ 在vue3中常见的组件通信有props、mitt、v-model、 r e f s 、 refs、 refs、parent、provide、inject、pinia、slot等。不同的组件关系用不同的传递方式。常见的撘配形式如下表所示。 组件关系传递方式父传子1. props2. v-model3. $refs…...

MySQL快速入门(极简)

SQL 介绍及 MySQL 安装 一、实验简介 本课程为实验楼提供的 MySQL 实验教程&#xff0c;所有的步骤都在实验楼在线实验环境中完成&#xff0c;学习中请按照实验步骤依次操作。 本课程为 SQL 基本语法及 MySQL 基本操作的实验&#xff0c;理论内容较少&#xff0c;动手实践多…...

CentOS7安装NVIDIA显卡驱动指引【笔记】

CentOS7安装NVIDIA显卡驱动指引【笔记】 实践设备:华硕FX-PRO(NVIDIA GeForce GTX 960M) 环境准备: 1、将系统安装到设备上正常运行; 2、设备网络调试,可以正常访问外网; 3、配置ssh服务(非必要,根据实际情况)。 说明: 本文档所提供的指引和参考主要基于特定实践…...

【RabbitMQ】RabbitMQ配置与交换机学习

【RabbitMQ】RabbitMQ配置与交换机学习 文章目录 【RabbitMQ】RabbitMQ配置与交换机学习简介安装和部署1. 安装RabbitMQ2.创建virtual-host3. 添加依赖4.修改配置文件 WorkQueues模型1.编写消息发送测试类2.编写消息接收&#xff08;监听&#xff09;类3. 实现能者多劳 交换机F…...

常见排序算法,快排,希尔,归并,堆排

后面的排序中都要用到的函数 //交换 void Swap(int* p1, int* p2) {int* tmp *p1;*p1 *p2;*p2 tmp; } 包含的头文件 "Sort.h" #pragma once #include<stdio.h> #include<stdlib.h> #include<assert.h> #include<time.h> #include<s…...

语法的时态1——一般现在时(1)

定义&#xff1a;一般现在时用来表示经常发生的动作&#xff0c;以及客观事实。 一般现在时的构成以及标志词 1.一般现在时的结构 &#xff08;1&#xff09;主系表结构 构成&#xff1a;主语be(am,is,ear)其他。属于状态句。 I…...

JAVA:在IDEA引入本地jar包的方法并解决打包scope为system时发布无法打包进lib的方案

一.引入本地Jar包的步骤 有时maven依耐的包是本地的jar包&#xff0c;此时需要进行以下步骤设置。 步骤1.在pom.xml中添加插件设置,将system范围包含进来&#xff0c;此设置是为了在打包时&#xff0c;本地jar包自动生成到部署包里。(若无法打进包&#xff0c;请参考下文的方…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...

【threejs】每天一个小案例讲解:创建基本的3D场景

代码仓 GitHub - TiffanyHoo/three_practices: Learning three.js together! 可自行clone&#xff0c;无需安装依赖&#xff0c;直接liver-server运行/直接打开chapter01中的html文件 运行效果图 知识要点 核心三要素 场景&#xff08;Scene&#xff09; 使用 THREE.Scene(…...

2025 后端自学UNIAPP【项目实战:旅游项目】7、景点详情页面【完结】

1、获取景点详情的请求【my_api.js】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http(/login/getWXSessionKey, {code,avatar}); };//…...