当前位置: 首页 > news >正文

保姆级使用PyTorch训练与评估自己的Replknet网络教程

在这里插入图片描述

文章目录

  • 前言
  • 0. 环境搭建&快速开始
  • 1. 数据集制作
    • 1.1 标签文件制作
    • 1.2 数据集划分
    • 1.3 数据集信息文件制作
  • 2. 修改参数文件
  • 3. 训练
  • 4. 评估
  • 5. 其他教程

前言

项目地址:https://github.com/Fafa-DL/Awesome-Backbones

操作教程:https://www.bilibili.com/video/BV1SY411P7Nd

Replknet原论文:点我跳转

如果你以为该仓库仅支持训练一个模型那就大错特错了,我在项目地址放了目前支持的42种模型(LeNet5、AlexNet、VGG、DenseNet、ResNet、Wide-ResNet、ResNeXt、SEResNet、SEResNeXt、RegNet、MobileNetV2、MobileNetV3、ShuffleNetV1、ShuffleNetV2、EfficientNet、RepVGG、Res2Net、ConvNeXt、HRNet、ConvMixer、CSPNet、Swin-Transformer、Vision-Transformer、Transformer-in-Transformer、MLP-Mixer、DeiT、Conformer、T2T-ViT、Twins、PoolFormer、VAN、HorNet、EfficientFormer、Swin Transformer V2、MViT V2、MobileViT、DaViT、RepLKNet、BEiT、EVA、MixMIM、EfficientNetV2),使用方式一模一样。且目前满足了大部分图像分类需求,进度快的同学甚至论文已经在审了

0. 环境搭建&快速开始

  • 这一步我也在最近录制了视频

最新Windows配置VSCode与Anaconda环境

『图像分类』从零环境搭建&快速开始

  • 不想看视频也将文字版放在此处。建议使用Anaconda进行环境管理,创建环境命令如下
conda create -n [name] python=3.6 其中[name]改成自己的环境名,如[name]->torch,conda create -n torch python=3.6
  • 我的测试环境如下
torch==1.7.1
torchvision==0.8.2
scipy==1.4.1
numpy==1.19.2
matplotlib==3.2.1
opencv_python==3.4.1.15
tqdm==4.62.3
Pillow==8.4.0
h5py==3.1.0
terminaltables==3.1.0
packaging==21.3
  • 首先安装Pytorch。建议版本和我一致,进入Pytorch官网,点击 install previous versions of PyTorch,以1.7.1为例,官网给出的安装如下,选择合适的cuda版本
# CUDA 11.0
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CUDA 10.2
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2# CUDA 10.1
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CUDA 9.2
pip install torch==1.7.1+cu92 torchvision==0.8.2+cu92 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CPU only
pip install torch==1.7.1+cpu torchvision==0.8.2+cpu torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
  • 安装完Pytorch后,再运行
pip install -r requirements.txt
  • 下载MobileNetV3-Small权重至datas
  • Awesome-Backbones文件夹下终端输入
python tools/single_test.py datas/cat-dog.png models/mobilenet/mobilenet_v3_small.py --classes-map datas/imageNet1kAnnotation.txt

1. 数据集制作

1.1 标签文件制作

  • 将项目代码下载到本地
    在这里插入图片描述

  • 本次演示以花卉数据集为例,目录结构如下:

├─flower_photos
│  ├─daisy
│  │      100080576_f52e8ee070_n.jpg
│  │      10140303196_b88d3d6cec.jpg
│  │      ...
│  ├─dandelion
│  │      10043234166_e6dd915111_n.jpg
│  │      10200780773_c6051a7d71_n.jpg
│  │      ...
│  ├─roses
│  │      10090824183_d02c613f10_m.jpg
│  │      102501987_3cdb8e5394_n.jpg
│  │      ...
│  ├─sunflowers
│  │      1008566138_6927679c8a.jpg
│  │      1022552002_2b93faf9e7_n.jpg
│  │      ...
│  └─tulips
│  │      100930342_92e8746431_n.jpg
│  │      10094729603_eeca3f2cb6.jpg
│  │      ...
  • Awesome-Backbones/datas/中创建标签文件annotations.txt,按行将类别名 索引写入文件;
daisy 0
dandelion 1
roses 2
sunflowers 3
tulips 4

在这里插入图片描述

1.2 数据集划分

  • 打开Awesome-Backbones/tools/split_data.py
  • 修改原始数据集路径以及划分后的保存路径,强烈建议划分后的保存路径datasets不要改动,在下一步都是默认基于文件夹进行操作
init_dataset = 'A:/flower_photos' # 改为你自己的数据路径
new_dataset = 'A:/Awesome-Backbones/datasets'
  • Awesome-Backbones/下打开终端输入命令:
python tools/split_data.py
  • 得到划分后的数据集格式如下:
├─...
├─datasets
│  ├─test
│  │  ├─daisy
│  │  ├─dandelion
│  │  ├─roses
│  │  ├─sunflowers
│  │  └─tulips
│  └─train
│      ├─daisy
│      ├─dandelion
│      ├─roses
│      ├─sunflowers
│      └─tulips
├─...

1.3 数据集信息文件制作

  • 确保划分后的数据集是在Awesome-Backbones/datasets下,若不在则在get_annotation.py下修改数据集路径;
datasets_path   = '你的数据集路径'
  • Awesome-Backbones/下打开终端输入命令:
python tools/get_annotation.py
  • Awesome-Backbones/datas下得到生成的数据集信息文件train.txttest.txt
    在这里插入图片描述

2. 修改参数文件

  • 每个模型均对应有各自的配置文件,保存在Awesome-Backbones/models

  • backboneneckheadhead.loss构成一个完整模型

  • 找到Replknet参数配置文件,可以看到所有支持的类型都在这,且每个模型均提供预训练权重
    在这里插入图片描述

  • model_cfg中修改num_classes为自己数据集类别大小

  • 按照自己电脑性能在data_cfg中修改batch_sizenum_workers

  • 若有预训练权重则可以将pretrained_weights设置为True并将预训练权重的路径赋值给pretrained_weights

  • 若需要冻结训练则freeze_flag 设置为True,可选冻结的有backbone, neck, head

  • optimizer_cfg中修改初始学习率,根据自己batch size调试,若使用了预训练权重,建议学习率调小

  • 学习率更新详见core/optimizers/lr_update.py,同样准备了视频『图像分类』学习率更新策略|优化器

  • 更具体配置文件修改可参考配置文件解释,同样准备了视频『图像分类』配置文件补充说明

3. 训练

  • 确认Awesome-Backbones/datas/annotations.txt标签准备完毕
  • 确认Awesome-Backbones/datas/train.txttest.txtannotations.txt对应
  • 选择想要训练的模型,在Awesome-Backbones/models/下找到对应配置文件,以replknet-31B为例
  • 按照配置文件解释修改参数
  • Awesome-Backbones路径下打开终端运行
python tools/train.py models/replknet/replknet-31B.py

在这里插入图片描述

4. 评估

  • 确认Awesome-Backbones/datas/annotations.txt标签准备完毕
  • 确认Awesome-Backbones/datas/test.txtannotations.txt对应
  • Awesome-Backbones/models/下找到对应配置文件
  • 在参数配置文件中修改权重路径其余不变
ckpt = '你的训练权重路径'
  • Awesome-Backbones路径下打开终端运行
python tools/evaluation.py models/replknet/replknet-31B.py

在这里插入图片描述

  • 单张图像测试,在Awesome-Backbones打开终端运行
python tools/single_test.py datasets/test/dandelion/14283011_3e7452c5b2_n.jpg models/replknet/replknet-31B.py

在这里插入图片描述
至此完毕,实在没运行起来就去B站看我手把手带大家运行的视频教学吧~

5. 其他教程

除开上述,我还为大家准备了其他一定用到的操作教程,均放在了GitHub项目首页,为了你们方便为也粘贴过来

  • 环境搭建
  • 数据集准备
  • 配置文件解释
  • 训练
  • 模型评估&批量检测/视频检测
  • 计算Flops&Params
  • 添加新的模型组件
  • 类别激活图可视化
  • 学习率策略可视化

有任何更新均会在Github与B站进行通知,记得Star与三连关注噢~

相关文章:

保姆级使用PyTorch训练与评估自己的Replknet网络教程

文章目录前言0. 环境搭建&快速开始1. 数据集制作1.1 标签文件制作1.2 数据集划分1.3 数据集信息文件制作2. 修改参数文件3. 训练4. 评估5. 其他教程前言 项目地址:https://github.com/Fafa-DL/Awesome-Backbones 操作教程:https://www.bilibili.co…...

1/4车、1/2车、整车悬架PID控制仿真合集

目录 前言 1. 1/4悬架系统 1.1数学模型 1.2仿真分析 2. 1/2悬架系统 2.1数学模型 2.2仿真模型 2.3仿真分析 3. 整车悬架系统 3.1数学模型 3.2仿真分析 参考文献 前言 前面几篇文章介绍了LQR、SkyHook、H2/H∞控制,接下来会继续介绍滑模、反步法、MPC、…...

媒体邀约的形式和步骤

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 做媒体服务很多年,今天就与大家分享下媒体邀约都有哪些形式: 1,电话邀约:通过电话与媒体记者进行沟通,邀请其参加活动或接受采…...

Unity合批处理

一.静态合批标记为Batching Static的物体(标记后物体运行不能移动、旋转、缩放)在使用相同材质球的条件下在项目打包的时候unity会自动将这些物体合并到一个大Mesh*缺点打包后体积增大运行时内存占用增大二.动态批处理不超过300个顶点不超过900个属性不包…...

Android 进阶——Binder IPC之Native 服务的启动及代理对象的获取详解(六)

文章大纲引言一、Binder线程池的启动1、ProcessState#startThreadPool函数来启动线程池2、IPCThreadState#joinThreadPool 将当前线程进入到线程池中去等待和处理IPC请求二、Service 代理对象的获取1、获取Service Manager 代理对象BpServiceManager2、调用BpServiceManager#ge…...

企业官网怎么做?

企业官网是企业展示形象和吸引潜在客户的重要渠道之一,因此如何打造一款优秀的企业官网显得尤为重要。本文将从策划、设计、开发和上线等方面,为您介绍企业官网的制作步骤。 一、策划 1.明确目标 企业官网的制作需要明确目标,即确定官网的主…...

FPGA和IC设计怎么选?哪个发展更好?

很多人纠结FPGA和IC设计怎么选,其实往小了说,要看你选择的具体是哪个方向岗位。往大了说,将来你要是走更远,要成为大佬,那基本各个方向的都要有涉及的。 不同方向就有不同的发展,目前在薪资上IC设计要比FP…...

宁盾目录成功对接Coremail邮箱,为其提供LDAP统一认证和双因子认证

近日,宁盾与 Coremail 完成兼容适配,在 LDAP 目录用户同步、统一身份认证及双因子认证等模块成功对接。借此机会,双方将加深在产品、解决方案等多个领域的合作,携手共建信创合作生态,打造信创 LDAP 身份目录服务新样本…...

Go: struct 结构体类型和指针【学习笔记记录】

struct 结构体类型和指针struct 结构体类型1. 定义结构体2. 访问结构体成员3. 结构体的使用及匿名字段指针1. 指针变量的声明及使用2. 指针数组的定义及使用3. 函数传参修改值struct 结构体类型 Go 语言中数组可以存储同一类型的数据,但在结构体中我们可以为不同项…...

量化派递交上市申请,数字经济风口上开启“狂飙”模式

今年全国两会,代表委员们纷纷围绕“中小企业数字化转型”建言献策。如全国政协委员、甘肃省工业和信息化厅副厅长黄宝荣建议,在工业领域加快数字经济立法,支撑中小企业数字化转型;全国政协委员、中国财政科学研究院院长刘尚希建议…...

Linux:IO接口

目录系统调用接口文件描述符一、open二、write三、read四、lseek五、close之前介绍了IO库函数,本文主要介绍系统提供的IO接口,与IO库函数搭配食用效果更佳。 系统调用接口 常使用的IO系统调用接口如下: 接口作用open打开指定的文件write向指…...

cron表达式?

简单理解corn表达式:在使用定时调度任务的时候,我们最常用的,就是cron表达式了。通过cron表达式来指定任务在某个时间点或者周期性的执行。cron表达式配置起来简洁方便,无论是Spring的Scheduled还是用Quartz框架,都支持…...

日常任务开发系统

简介 要求 1、人员信息管理:姓名、性别、出生年月、职称、学位、学习或承担的课 2、任务发布模块: 1)任务信息至少需包含:任务名称、任务类型、任务开始时间、任务截至时间、任务需要的人数、任务分值,是否需要提交任务成果等字段 2)可指定任务申领人…...

SQLMap安装教程

注意:在python3环境下安装sqlmap的时候会提示需要在python2的环境下才能安装,其实在python3.6以后也都支持sqlmap了。 sqlmap安装步骤: 一、下载python; 下载地址 https://www.python.org/downloads/ 下载教程参考&#xff08…...

【每日一题】蓝桥杯Day06

文章目录一、星期计算1、问题描述2、思路解析3、AC代码4、代码解析二、考勤刷卡1、问题描述2、解题思路3、AC代码4、代码解析5、算法分析三、卡片1、问题描述2、解题思路3、AC代码4、代码解析5、算法分析一、星期计算 原题链接:星期计算 1、问题描述 本题为填空题&a…...

实体店创业项目 - 开个网咖需要投入多少钱?主要有哪些费用?

创业开个网咖需求投入的资金主要包括场所租金、装饰费用、设备费用、人员薪酬、水电费用等。详细投入多少钱,需求依据不同区域的市场情况和经营策略来确定。一般来说,开一家中等规划的网咖需求投入10万元以上的资金。 主要有哪些费用? 场所租…...

Linux基础命令-ss显示socket信息

Linux基础命令-netstat显示网络状态 ss 一. 命令介绍 先使用手册查看命令介绍信息 NAME ss - another utility to investigate sockets DESCRIPTION ss is used to dump socket statistics. It allows showing information similar to netstat. It can display more TCP and …...

用一个例子告诉你 怎样在spark中创建累加器

目录 1.说明 1.1 什么是累加器 1.2 累加器的功能 2. 使用累加器 3. 累加器和reduce、fold算子的区别 1.说明 1.1 什么是累加器 累加器是Spark提供的一个共享变量(Shared Variables) 默认情况下,如果Executor节点上使用到了Driver端定义的变量(通过算子传…...

ICG-Avidin,吲哚菁绿标记的亲和素,应用:生物成像、生物检测、免疫组织化学、微阵列检测制备纳米胶束或微球或其他纳米粒子装载ICG实现成像。

ICG-Avidin,吲哚菁绿标记的亲和素 中文名称:吲哚菁绿标记的亲和素 英文名称:ICG-Avidin 激发发射波长:785/821nm 性状:绿色粉末 溶剂:水,部分常规有机溶剂 稳定性:-20℃下干燥避光 应用&…...

Promise的理解和使用

Promise是什么 抽象表达 promise 是一门新的技术(ES6规范)Promise 是JS中进行异步编程的新解决方案 具体表达 从语法上来说:Promise是一个构造函数从功能上来说:promise对象用来封装一个异步操作并可以获取其成功/失败的结果 回调函数就…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...

基于 TAPD 进行项目管理

起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...