自动检测曲别针数量:图像处理技术的应用
引言
在这篇博客中,我们将探讨如何使用计算机视觉技术自动检测图像中曲别针的数量。
如图:

[1]使用灰度转换
由于彩色信息对于曲别针计数并不重要,我们将图像转换为灰度图,这样可以减少处理数据的复杂度,加速后续的图像处理步骤。
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
[2]二值化处理
通过应用二值化处理,我们将灰度图转换为黑白图像。在这个步骤中,图像中的所有像素点要么是黑色,要么是白色,这简化了轮廓的检测。
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)
- 二值化后的图片:

[3]轮廓检测
使用OpenCV的findContours函数,我们从二值图像中提取轮廓。这些轮廓代表潜在的曲别针。
# 查找轮廓
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 遍历轮廓并计算面积
for contour in contours:cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)
但是这边我们可以看到很多不必要的内容都被放进来了,所以我们接着进行进一步操作。

[4]面积过滤和计数
为了区分真正的曲别针和其他噪声,我们计算每个轮廓的面积,并只统计那些面积超过预设阈值的轮廓。这一步骤帮助我们准确地识别和计数曲别针。
# 查找轮廓
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow("Binary", binary)# 初始化计数器
large_contour_count = 0
min_area = 10000 # 设置面积阈值,根据实际情况调整# 遍历轮廓并计算面积
for contour in contours:area = cv2.contourArea(contour)if area > min_area:large_contour_count += 1cv2.drawContours(image, [contour], -1, (0, 255, 0), 2) # 绘制满足条件的轮廓
- 效果:

可以看出确实正确的识别出曲别针的数量

完整代码
import cv2# 加载图像
image = cv2.imread('./images/nums.jpg')
cv2.imshow("Original", image)# 转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 应用二值化阈值
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)
cv2.imshow("Binary", binary)# 查找轮廓
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow("Binary", binary)# 初始化计数器
large_contour_count = 0
min_area = 10000 # 设置面积阈值,根据实际情况调整# 遍历轮廓并计算面积
for contour in contours:area = cv2.contourArea(contour)if area > min_area:large_contour_count += 1cv2.drawContours(image, [contour], -1, (0, 255, 0), 2) # 绘制满足条件的轮廓# 显示图像
cv2.imshow('Contoured Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 输出符合条件的曲别针数量
print(f"曲别针数量为: {large_contour_count}")
相关文章:
自动检测曲别针数量:图像处理技术的应用
引言 在这篇博客中,我们将探讨如何使用计算机视觉技术自动检测图像中曲别针的数量。 如图: [1]使用灰度转换 由于彩色信息对于曲别针计数并不重要,我们将图像转换为灰度图,这样可以减少处理数据的复杂度,加速后续的…...
【Git】多人协作 -- 详解
一、多人协作(1) ⽬前,我们所完成的工作如下: 基本完成 Git 的所有本地库的相关操作,git 基本操作,分支理解,版本回退,冲突解决等等。 申请码云账号,将远端信息 clone…...
Eureka和Nacos有哪些区别?
Eureka和Nacos都能起到注册中心的作用,用法基本类似。但还是有一些区别的,例如: Nacos支持配置管理,而Eureka则不支持。 而且服务注册发现上也有区别,我们来做一个实验: 我们停止user-service服务&#x…...
如何正确使用 include-what-you-use
简单地说,由 Google 开发的 include-what-you-use(IWYU)让源代码文件包含代码里用到的所有头文件。这种方法确保在改动了一些接口之后,代码依然最有可能编译成功。 之前我写了一篇关于 include-what-you-use 工具的文章ÿ…...
企业内网安全软件分享,有什么内网安全软件
内网安全? 其实就是网络安全的一种。 什么是内网安全软件? 内网安全软件是企业保障内网安全的一种重要工具。 它主要帮助企业实现对网络设备、应用程序、用户行为等方面的监控和管理,以预防和应对各种网络攻击。 这类软件主要用于对内网中…...
【摘葡萄game】
您想要了解的“摘葡萄游戏”可能是一个编程项目或者是一个编程相关的练习。我可以提供一个简单的摘葡萄游戏的思路和代码示例。这个游戏可以用多种编程语言来实现,比如Python、Java等。这里我以Python为例,给出一个基础版本的摘葡萄游戏的概念和代码。 …...
java如何实现字符串连接
在java中,字符串与字符串连接可以用运算符和 比如有字符串a,字符串b 想要把a和b连接起来,定义一个字符串变量c cab 或者 ab 示例代码 public class Zifuchuanlianjie {public static void main(String[] args) {String a"我叫李狗蛋";S…...
流量卡选卡攻略,拯救不会选流量卡的小白!
家人们,你们知道不,选择一款性价比高的流量卡,真的超级省钱。 一、首先,说一说申请。 运营商推出线上流量卡,注意是线上的流量卡,都是免费领取,运营商包邮到家,在激活充值之前不…...
python class __format__ __bytes__区别
在Python中,__format__和__bytes__是两个特殊方法,它们允许对象自定义它们在特定情境下的字符串表示。以下是这两个方法的区别和作用: __format__ 作用:__format__方法用于定义对象在使用format()函数或格式化字符串(…...
C++ | Leetcode C++题解之第134题加油站
题目: 题解: class Solution { public:int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {int n gas.size();int i 0;while (i < n) {int sumOfGas 0, sumOfCost 0;int cnt 0;while (cnt < n) {int j (i …...
【Linux】ls命令
这个命令主要是用于显示指定工作目录下之内容(列出目前工作目录所含的文件及子目录)。 掌握几个重点的常使用的就可以: ls -l # 以长格式显示当前目录中的文件和目录 ls -a # 显示当前目录中的所有文件和目录&am…...
多态、虚函数表与动态绑定的深入解析
目录 多态简介 虚函数表与动态绑定 虚函数表 动态绑定机制 内存与性能影响 纯虚函数与抽象类 纯虚函数 抽象类 动态类型转换与typeid操作符 dynamic_cast typeid操作符 虚析构函数的重要性 在面向对象编程中,多态性是一种核心特性,它允许我们…...
VitePress+Docker+jenkins构建个人网站
VitePress官网 VitePress | 由 Vite 和 Vue 驱动的静态站点生成器 可以理解为一个前端脚手架:快速生成个人站点 最好先大概看一遍 快速开始 | VitePress 可以在线体验一下 安装条件 node -v 检查下node版本 在D盘创建一个文件夹 例如:VitePress 进入文件夹 cmd npm ini…...
Windows11下Docker使用记录(五)
目录 准备1. WSL安装cuda container toolkit2. win11 Docker Desktop 设置3. WSL创建docker container并连接cuda4. container安装miniconda(可选) Docker容器可以从底层虚拟化,使我们能够在 不降级 CUDA驱动程序的情况下使用 任何版本的CU…...
快速学习Java的多维数组技巧
哈喽,各位小伙伴们,你们好呀,我是喵手。运营社区:C站/掘金/腾讯云;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一…...
C语言运算类型有哪些
C语言中的运算类型主要分为以下几类: 1. 算术运算符: - 加法运算符 - 减法运算符 - - 乘法运算符 * - 除法运算符 / - 取模运算符 %(取余数) 2. 关系运算符: - 大于 > - 小于 < - 大…...
【深度学习】Loss为Nan的可能原因
文章目录 1. 问题情境2. 原因分析3. 导致Loss为Nan的其他可能原因 1. 问题情境 在某个网络架构下,我为某个数据项引入了一个损失函数。 这个数据项是nn.Embedding类型的,我加入的损失函数是对nn.Embedding空间做约束。 因为我在没加入优化loss前&#x…...
解密!考研数学满分学霸的备考书单
这题我太会了,高数视频有是有真的又臭又长,我也不喜欢看 但是自己看教材,有的地方又比较难以理解,所以,这个时候一本通俗易懂的教材就显得格外重要,国内很多教材都讲的晦涩难懂,所以我给大家推…...
AI绘画工具介绍
AI绘画工具是利用人工智能技术帮助用户创作艺术作品的软件或平台。它们通常通过用户输入的描述性文字,自动解析并生成具有特定风格和主题的画作。以下是一些2024年流行的AI绘画工具的介绍: GitMind AI绘画2:一个提供多种语言界面的AI绘画生成…...
【APP逆向】央视频播放量增加,逆向全过程解密
✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
