PyTorch 统计属性-Tensor基本操作
-
最小 min, 最大 max, 均值 mean,累加 sum,累乘 prod …
>>> a = torch.arange(0,8).view(2,4).float() >>> a tensor([[0., 1., 2., 3.],[4., 5., 6., 7.]])>>> a.min() ## 最小值:tensor(0.) >>> a.max() ## 最大值:tensor(7.)>>> a.argmin() ## 最小值对应的 idx: tensor(0) >>> a.argmax() ## 最大值对应的 idx: tensor(7)>>> a.argmin(dim=1) ## 每行 dim=1 最小值对应的 idx: tensor([0, 0]) 每行都是最前面的数最小 >>> a.argmax(dim=1) ## 每行 dim=1 最大值对应的 idx: tensor([3, 3]) 每行都是最后面的数最大>>> a.argmin(dim=1, keepdim=True) ## 加 keepdim 可以保持原 a 维度 tensor([[0],[0]]) >>> a.argmax(dim=1, keepdim=True) ## 加 keepdim 可以保持原 a 维度 tensor([[3],[3]])>>> a.topk(3, dim=1) ## k 大的 value 和对应的 idx torch.return_types.topk( values=tensor([[3., 2., 1.],[7., 6., 5.]]), indices=tensor([[3, 2, 1],[3, 2, 1]])) >>> a.topk(3, dim=1, largest=False) ## k 小的:largest=False torch.return_types.topk( values=tensor([[0., 1., 2.],[4., 5., 6.]]), indices=tensor([[0, 1, 2],[0, 1, 2]]))>>> a.mean() ## 平均值:tensor(3.5000) >>> a.sum() ## 累加值:tensor(28.) >>> a.prod() ## 累乘值:tensor(0.) -
norm 范数,非 normalization 不是一个概念
>>> a = torch.full([1], 8) # tensor([1, 1, 1, 1, 1, 1, 1, 1]) >>> a.float().norm(1) #: tensor(8.) >>> a.float().norm(2) #: tensor(2.8284)>>> b = a.view(2,4) # tensor([[1, 1, 1, 1], [1, 1, 1, 1]]) >>> b.float().norm(1) #: tensor(8.) >>> a.float().norm(2) #: tensor(2.8284)>>> b.float().norm(1, dim=0) # 指定 dim:0 tensor([2., 2., 2., 2.]) >>> b.float().norm(1, dim=1) # 指定 dim: 1 tensor([4., 4.])- 用
.norm()时可能出现的RuntimeError解决方案:加.float() -> a.float.norm()>>> a.norm() Traceback (most recent call last):File "<stdin>", line 1, in <module>File "D:\Tutu.Python\lib\site-packages\torch\tensor.py", line 389, in normreturn torch.norm(self, p, dim, keepdim, dtype=dtype)File "D:\Tutu.Python\lib\site-packages\torch\functional.py", line 1290, in normreturn _VF.frobenius_norm(input, dim=(), keepdim=keepdim) # type: ignore RuntimeError: Can only calculate the mean of floating types. Got Long instead.
- 用
- B站视频参考资料
相关文章:
PyTorch 统计属性-Tensor基本操作
最小 min, 最大 max, 均值 mean,累加 sum,累乘 prod … >>> a torch.arange(0,8).view(2,4).float() >>> a tensor([[0., 1., 2., 3.],[4., 5., 6., 7.]])>>> a.min() ## 最小值:tensor(0.) >>> a.ma…...
波拉西亚战记加速器 台服波拉西亚战记免费加速器
波拉西亚战记是一款新上线的MMORPG游戏,游戏内我们有多个角色职业可以选择,可以体验不同的战斗流派玩法,开放式的地图设计,玩家可以自由的进行探索冒险,寻找各种物资。各种随机事件可以触发,让玩家的冒险过…...
Mocha + Chai 测试环境配置,支持 ES6 语法
下面是一个完整的 Mocha Chai 测试环境配置,支持 ES6 语法。我们将使用 Babel 来转译 ES6 代码。 步骤一:初始化项目 首先,在项目目录中运行以下命令来初始化一个新的 Node.js 项目: npm init -y步骤二:安装必要的…...
华为网络设备攻击防范
畸形报文攻击防范 攻击行为 畸形报文攻击是通过向交换机发送有缺陷的IP报文,使得交换机在处理这样的IP包时会出现崩溃,给交换机带来损失。 畸形报文攻击主要有如下几种: 没有IP载荷的泛洪攻击 IGMP空报文攻击 LAND攻击 Smurf攻击 TCP标…...
RK3588开发笔记-100M网口自协商成1000M网口
目录 前言 一、问题描述 二、原理图连接 三、解决方法 总结 前言 在进行RK3588开发过程中,遇到一个令人困惑的问题:在使用RTL8211F-CG phy芯片出来的100M网口在自协商后连接速率变成了1000M。这篇博客将详细记录这个问题的产生、排查过程以及最终的解决方案,希望能对遇到…...
Python第二语言(十三、PySpark实战)
目录 1.开篇 2. PySpark介绍 3. PySpark基础准备 3.1 PySpark安装 3.2 掌握PySpark执行环境入口对象的构建 3.3 理解PySpark的编程模型 4. PySpark:RDD对象数据输入 4.1 RDD对象概念:PySpark支持多种数据的输入,完成后会返回RDD类的对…...
《阅读的方法》读后感——超越期待的收获
当我翻开这本书的扉页时,未曾料到它会给我带来如此深远的启示和收获。依照推荐序言中的指引,我随意翻阅、精心选读,每一次都如同打开一扇新的窗户,让我窥见不同领域的智慧和美好。 等地铁时、临睡前随便读点什么,有什么…...
算法训练营第五十八天 | LeetCode 392 判断子序列、卡码网模拟美团笔试第一、二、三题(300/500有待提高)
卡码网图论更新了可以去看看,模拟笔试第四题就是深搜/广搜还不太会 LeetCode 392 判断子序列 其实就是最长公共子序列翻版 代码如下: class Solution {public boolean isSubsequence(String s, String t) {int[][] dp new int[s.length() 1][t.lengt…...
Sa-Token鉴权与网关服务实现
纠错: 在上一部分里我完成了微服务框架的初步实现,但是先说一下之前有一个错误,就是依赖部分 上次的学习中我在总的父模块下引入了spring-boot-dependencies(版本控制)我以为在子模块下就不需要再引用了,…...
企事业单位安全生产月活动怎样向媒体投稿?
作为一名单位的信息宣传员,我肩负着将每一次重要活动的精彩瞬间转化为文字,向外界传递我们单位声音的重任。初入此行时,我满怀热情,坚信通过传统的方式——电子邮件投稿,能够有效地将我们的故事传播出去。然而,现实却给我上了生动的一课。 记得在筹备“安全生产月”活动的宣传时…...
MySQL8.0默认TCP端口介绍
1、本文内容 选择题TCP/IPMySQL 8.0 的默认TCP端口show variables查看总结 2、选择题 A、3306 B、33060 C、33062 D、33063 3、TCP/IP TCP/IP(Transmission Control Protocol/Internet Protocol,传输控制协议/网际协议)是指能够在多个不同…...
Javaweb避坑指北(持续更新)
内容较多可按CtrlF搜索 0.目录 1.获取插入数据后自增长主键的值 2.Controller中返回给ajax请求字符串/json会跳转到xxx.jsp 3.ajax请求获得的json无法解析 4.在Controller中使用ServletFileUpload获取的上传文件为null 5.莫名其妙报service和dao里方法的错误 6.ajax请求拿…...
Web前端知道:深入探索与无尽挑战
Web前端知道:深入探索与无尽挑战 Web前端,这个看似简单却实则深不可测的领域,一直以来都吸引着无数开发者投入其中。在这个充满未知与可能的世界里,我们既是探索者,也是挑战者。本文将从四个方面、五个方面、六个方面…...
QT调用vs2019生成的c++动态库
QT调用vs2019生成的c动态库 dll库的创建方法: VS2019创建c动态链接库dll与调用方法-CSDN博客 加减法示范: 头文件 // 下列 ifdef 块是创建使从 DLL 导出更简单的 // 宏的标准方法。此 DLL 中的所有文件都是用命令行上定义的 DLL3_EXPORTS // 符号编…...
C语言TC中有⼏个画线函数?怎么使⽤?
一、问题 C语⾔中画线的函数好像不⽌ line( )⼀个,那么除了 line( ) ,还有哪些画线函数?怎么使⽤? 二、解答 TC中有3种画线的函数,共语法格式如下。 void far line(int x0, int y0, int xl, int y1); void far linet…...
掌握WhoisAPI,提升域名管理的效率
在互联网时代,域名管理是网站运营中非常重要的一环。通过域名,我们能够轻松访问和识别不同的网站。然而,域名的注册和管理也是一项复杂的任务,特别是对于大规模拥有许多域名的企业来说。为了提升域名管理的效率,我们可…...
Docker与Docker-Compose详解
1、Docker是什么? 在计算机中,虚拟化(英语: Virtualization) 是一种资源管理技术,是将计算机的各种实体资源,如服务器、网络、内存及存储等,予以抽象、转换后呈现出来,打破实体结构间的不可切割的障碍&…...
微服务之熔断器
1、高并发带来的问题 在微服务架构中,我们将业务拆分成一个个的服务,服务与服务之间可以相互调用,但是由于网络原因 或者自身的原因,服务并不能保证服务的100%可用,如果单个服务出现问题,调用这个服务就会…...
【高校科研前沿】北京大学赵鹏军教授团队在Nature Communications发文:揭示城市人群移动的空间方向性
文章简介 论文名称:Unravelling the spatial directionality of urban mobility 第一作者及单位:赵鹏军(教授|第一作者|北京大学)&王浩(博士生|共同一作|北京大学); 通讯作者及单位:赵鹏军…...
徐州存储服务器会应用在哪些场景?
企业的业务随着不断的发展,数据信息与重要文件也在不断激增,存储服务器也受到了各个领域的广泛运用,那徐州存储服务器会应用在哪些场景当中呢? 存储服务器能够存储大量的数据信息、图片和视频等内容,是专门为数据存储设…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
