【动态规划】| 路径问题之最小路径和 力扣64
🎗️ 主页:小夜时雨
🎗️专栏:动态规划
🎗️如何活着,是我找寻的方向
目录
- 1. 题目解析
- 2. 代码
1. 题目解析
题目链接: https://leetcode.cn/problems/minimum-path-sum/description/
这道题目和之前一道题 不同路径1力扣62: https://leetcode.cn/problems/unique-paths/description/ 有相似的地方, 建议先去看看那道题整理一下思路, 会简单一些.
通常动态规划的题目有五个大步骤进行解析, 接下来一一来进行分析.
1. 状态表示
动态规划的重点是状态表示, 我们通过状态表示才可以写出正确的状态转移方程, 状态表示我们通常都是根据 经验+题目 要求来进行定义的.
比如本道题又是一个二维的矩阵, 那么依旧可以定义我们的状态表示为
dp[i][j]: 表示到达 (i, j) 这个位置时, 路径上的数字总和为最小
2. 状态转移方程
- 根据题目要求, 假如我们走到了 (i,j) 位置时, 我们可以从上面往下走或者是从左面往右走, 即是从 (i-1, j) 或者 (i, j-1) 往 (i, j) 的位置走。
- 根据状态表示, dp[i][j] 的大小可以由两部分组成, 问的是路径总和为最小, 那么共有两条不同的路径: 从左往右走或者从上往下走,求的应该是这二者中的最小值。
- 从 (0, 0) 走到 (i-1, j) 的最小路径总和假设为 X , 那么从 (0, 0) 走到 (i, j) 的最小路径总和就是 X + nums[i][j], 注意要加上 (i,j)位置的数字。
- 正好所对应的就是 dp[i - 1][j] 所表示的含义. 同理 dp[i][j - 1] 也是. 那么状态转移方程应如下表示:
dp[i][j] = Math.min(dp[i - 1][j],dp[i][j - 1]) + nums[i][j]
- 但是有一个细节问题, 这里和不同路径1 不同的是, 这里需要用到原数组,我们通常也是采取多加一行一列的方式来避免出现 dp 表越界的情况, 所以要注意映射关系。
- 即是遍历 dp 表填表的过程中的 (i, j)对应原数组的值是 nums[i- 1][j - 1] 要注意,后面还会再强调一遍。
3. 初始化
细节问题: 观察状态转移方程可知, 有可能会有越界的风险, 此处我们依旧采取一种多加一行一列的方式来进行初始化.多加一行一列要保证两点:
- 虚拟节点的值要保证后面的dp 表里的值是正确的
- 要注意下标的映射关系. 因为我们是多加了一行一列, 所以对应到原始数组就应该行列要减一. (此处用到了原数组, 所以要有这个映射关系)
注意 :
这道题的初始化和前两道题有些许不同
- 原本的dp[0][0] 最小的路径和就是本身自己, 也就是 dp[0][0] = nums[0][0]. 因为我们多加了一行一列, 所以变成了 dp[1][1] = nums[0][0].
- 观察下图我们发现,填写 dp[1][1] 的时候需要用到左边和上边值, 因为求的是二者中的最小值, 为了不干扰结果, 设置为0即可。
- 看下图,但是填写 dp[1][2] 的时候,需要用到上面的值 dp[0][2] 和 dp[1][1] 作比较求最小值,倘如是dp[1][2] 还是默认初始化为 0 的话, 就会影响结果,使dp[1][2] = dp[0][2] + nums[0][1], 导致错误了.
- dp[1][2] 本该是只有一条路径, 那就是用到 (1,1)走到(1,2),就应该是 dp[1][2] = dp[1][1] + nums[0][1]. 观察结果,让 dp[0][2] 是一个非常大的数字,不影响结果即可。此处通常我们设置为整数最大值或者 0x3f3f3f3f.
看图更容易理解
4. 填表顺序
观察可知, 填 (i, j) 的值的时候需要用到上一行和左边的值. 所以填表顺序是 从上往下, 从左往右.
5. 返回值
根据题目的要求, 要到达(m, n) 最小路径和是多少, 正好对应 dp[m][n] 的表示. 所以返回 dp[m][n] 即可.
2. 代码
动态规划的代码编写一般都是分为 4 个步骤进行:
- 创建 dp 表
- 初始化
- 填表
- 返回值
// 动态规划// 是不同路径1 的小幅改动版版: https://leetcode.cn/problems/unique-paths/public int uniquePathsWithObstacles(int[][] ob) {// 1.创建 dp表// 2.初始化// 3.填表// 4.返回值// 动态规划 这里的是二维, 所以时空都是O(M*N)int m = ob.length, n = ob[0].length;int[][] dp = new int[m + 1][n + 1];// dp[1][1] = 1;dp[0][1] = 1;// 做好映射关系, 原数组的(0,0) 对应dp表中的(1,1)// 这里填的是 dp 表, 所以建议从(1,1) 开始, 也就是dp表多加了一行一列// 如果是障碍的话, 就直接忽略, 默认就是 0, 也就是表示到不了for(int i = 1; i <= m; i++) { // 从上往下每一行for(int j = 1; j <= n; j++) { // 从左往右每一列if(ob[i - 1][j - 1] == 0) {dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}}return dp[m][n];}
🎗️🎗️🎗️ 好啦,到这里有关本题的分享就没了,如果感觉做的还不错的话可以点个赞,关注一下,你的支持就是我继续下去的动力,我们下期再见,拜了个拜~ ☆*: .。. o(≧▽≦)o .。.:*☆
相关文章:

【动态规划】| 路径问题之最小路径和 力扣64
🎗️ 主页:小夜时雨 🎗️专栏:动态规划 🎗️如何活着,是我找寻的方向 目录 1. 题目解析2. 代码 1. 题目解析 题目链接: https://leetcode.cn/problems/minimum-path-sum/description/ 这道题目和之前一道…...
如何在vector中插入和删除元素?
在C的std::vector中插入和删除元素通常使用其成员函数来完成。以下是如何在std::vector中插入和删除元素的示例: 插入元素 在末尾插入元素:使用push_back函数。 cpp复制代码 #include <vector> int main() { std::vector<int> v; v.push_…...

独具韵味的移动端 UI 风格
独具韵味的移动端 UI 风格...

【SpringBoot】SpringBoot:构建实时聊天应用
文章目录 引言项目初始化添加依赖 配置WebSocket创建WebSocket配置类创建WebSocket处理器 创建前端页面创建聊天页面 测试与部署示例:编写单元测试 部署扩展功能用户身份验证消息持久化群组聊天 结论 引言 随着实时通信技术的快速发展,聊天应用在现代We…...

基于Matlab的车牌识别停车场出入库计时计费管理系统(含GUI界面)【W6】
简介: 在当今城市化进程加快的环境下,停车管理成为了一个日益重要和复杂的问题。城市中的停车资源有限,如何高效利用和管理这些资源,不仅关乎市民出行便利性,也涉及到城市交通拥堵、环境污染等诸多问题的解决。 传统的…...

大众点评js逆向过程(未完)
相关链接 1、控制流平坦化进行AST 解析 AST网址 2、JS进制转换(Function.prototype.call) 1、断点调试mtgsig参数 这里mtgsig已经被拼到url中 2、进入后mtgsig已经计算完, ir he(this[b(4326)], !1), 就是加密函数 
龙迅LT9611UXC 2 PORT MIPIDSI/CSI转HDMI 2.1,支持音频IIS/SPDIF输入,支持标准4K60HZ输出
龙迅LT9611UXC描述: LT9611UXC是一个高性能的MIPI DSI/CSI到HDMI2.0转换器。MIPI DSI/CSI输入具有可配置的单端口或双端口,1高速时钟通道和1~4高速数据通道,最大2Gbps/通道,可支持高达16Gbps的总带宽。LT9611UXC支持突发模式DSI视…...

红黑树(C++)
文章目录 写在前面1. 红黑树的概念及性质1. 1 红黑树的概念1. 2 红黑树的性质 2. 红黑树节点的定义3. 红黑树的插入3.1 按照二叉搜索的树规则插入新节点3.2 检测新节点插入后,红黑树的性质是否造到破坏 4.红黑树的删除5.红黑树的验证6.源码 写在前面 在上篇文章中&…...

PyCharm设置不默认打开上次的项目
第一步 第二步 第三步 测试...

Eureka到Nacos迁移实战:解决配置冲突与启动异常
问题:Eureka到Nacos迁移实战:解决配置冲突与启动异常 在进行微服务架构升级,特别是注册中心从Eureka转向Nacos的过程中,我遇到了一个典型的技术挑战。目标是为了减少因配置变更导致的服务重启频率,我决定拥抱Nacos以其…...
k8s 小技巧: 查看 Pod 上运行的容器
目录 1. 示例 Pod 的定义文件2. kubectl describe pod(推荐)3. kubectl get pod3.1 json 格式3.2 yaml 格式 4. 其他操作 1. 示例 Pod 的定义文件 # 文章中所用 pod 的 yaml 定义文件, multi-container.yaml apiVersion: v1 kind: Pod metad…...

【Git】基础操作
初识Git 版本控制的方式: 集中式版本控制工具:版本库是集中存放在中央服务器的,team里每个人work时从中央服务器下载代码,是必须联网才能工作,局域网或者互联网。个人修改之后要提交到中央版本库 例如:SVM和…...

Linux:基础IO(二.缓冲区、模拟一下缓冲区、详细讲解文件系统)
上次介绍了:Linux:基础IO(一.C语言文件接口与系统调用、默认打开的文件流、详解文件描述符与dup2系统调用) 文章目录 1.缓冲区1.1概念1.2作用与意义 2.语言级别的缓冲区2.1刷新策略2.2具体在哪里2.3支持格式化 3.自己来模拟一下缓…...
事件传播机制 与 责任链模式
1、基本概念 责任链模式(Chain of Responsibility Pattern)是一种行为型设计模式,将请求沿着处理链传递,直到有一个对象能够处理为止。 2、实现的模块有: Handler(处理者):定义一个…...

uniapp 展示地图,并获取当前位置信息(精确位置)
使用uniapp 提供的map标签 <map :keymapIndex class"container" :latitude"latitude" :longitude"longitude" ></map> 页面初始化的时候,获取当前的位置信息 created() {let that thisuni.getLocation({type: gcj02…...
Autosar实践——诊断配置(DaVinci Configuration)
文章目录 一、制作诊断数据库文件(cdd文件)二、导入诊断数据库文件并修复模块生成的问题三、创建SWC CS接口Service Ports四、创建Service Runnable五、关联SWC和DCM/DEM模块六、RTE代码编写22服务2E服务31服务DTC Set/Get关联文章列表: Autosar-软件架构 Autosar诊断-简介和…...

植物大战僵尸杂交版全新版v2.1解决全屏问题
文章目录 🚋一、植物大战僵尸杂交版❤️1. 游戏介绍💥2. 如何下载《植物大战僵尸杂交版》 🚀二、解决最新2.1版的全屏问题🌈三、画质增强以及减少闪退 🚋一、植物大战僵尸杂交版 《植物大战僵尸杂交版》是一款在原版《…...

【code-server】Code-Server 安装部署
Code-Server 安装部署 1.环境准备 可以参考 https://coder.com/docs/code-server/install code-server的安装流程进行安装,主机环境是 Centos7 建议使用 docker 方式进行安装,可能会出现如下报错,需要升级 GNC 的版本,由于影响较…...
博客摘录「 YOLOv5模型剪枝压缩」2024年5月11日
添加L1正则来约束BN层系数 语义边缘检测和语义分割的关系调研结果为,语义信息可以用来增强语义分割的效果,也有一定的优点和采用理由,但此类论文的数量并不是很多,语义分割的多数方法还是使用深度学习直接做像素分类。在对比两者…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...