当前位置: 首页 > news >正文

第 6 章 监控系统 | 监控套路 - 总结

前面,我们使用 Prometheus + Grafana + Node Exporter 实现虚拟机监控及告警。

那么,😇 监控的套路究竟是什么呢?

  • 第 1 步:暴露 metrics,通过某个 exporter 将 metrics 暴露出来
  • 第 2 步:配置 Prometheus 抓取上面暴露的 metrics 数据
  • 第 3 步:加速 metrics 显示,配置 Recording Rule
  • 第 4 步:metrics 可视化,创建/导入 Grafana Dashboard
  • 第 5 步:告警及通知,配置告警规则、通知规则

往后,监控 MySQL、Redis 等等,都是上述套路哦!!!👈

相关文章

第 1 章 监控系统 | Prometheus 入门
第 2 章 监控系统 | Prometheus 进阶
第 3 章 监控系统 | Grafana 可视化
第 4 章

相关文章:

第 6 章 监控系统 | 监控套路 - 总结

前面,我们使用 Prometheus + Grafana + Node Exporter 实现虚拟机监控及告警。 那么,😇 监控的套路究竟是什么呢? 第 1 步:暴露 metrics,通过某个 exporter 将 metrics 暴露出来第 2 步:配置 Prometheus 抓取上面暴露的 metrics 数据第 3 步:加速 metrics 显示,配置…...

VsCode中C文件调用其他C文件函数失败

之前一直使用CodeBlocks,最近使用vscode多,感觉它比较方便,但在调用其他C文件的时候发现报错以下内容基于单C文件运行成功,否则请移步 博文:VSCode上搭建C/C开发环境 报错信息 没有使用CodeRunner插件,弹…...

css中content属性你了解多少?

在CSS中,content属性通常与伪元素(如 ::before 和 ::after)一起使用,用于在元素的内容之前或之后插入生成的内容。这个属性不接受常规的HTML内容,而是接受一些特定的值,如字符串、属性值、计数器值等。 以…...

JVM-GC-G1垃圾回收器

JVM-GC-G1垃圾回收器 基本概念 card table card table概念是为了解决新生代对象进入老年代时,在进行新生代扫描的时候会遍历老年代对象的问题。将内存分为多个card,如果在一个老年代card中存在引用新生代对象的对象,则将该区域标记及为dirty card。 CS…...

【Ubuntu通用压力测试】Ubuntu16.04 CPU压力测试

使用 stress 对CPU进行压力测试 我也是一个ubuntu初学者,分享是Linux的优良美德。写的不好请大佬不要喷,多谢支持。 sudo apt-get update 日常先更新再安装东西不容易出错 sudo apt-get upgrade -y 继续升级一波 sudo apt-get install -y linux-tools…...

Artix Linux 默认不使用 systemd

开发者选择不使用systemd,而倾向于使用OpenRC或runit作为其初始化系统的原因。 哲学和设计原则:Systemd是一个功能丰富的初始化系统和系统管理器,它集成了许多功能,但这也导致它的设计哲学与一些用户或开发者的偏好不符。有些用户…...

JVM-GC-CMS垃圾回收器

JVM-CMS垃圾回收器 CMS垃圾回收的步骤 1. 初始标记(InitialMarking) 这是一个STW的过程,并行标记,只是标记GC Roots能直接关联到的对象。由于GC Root直接关联的对象少,因此STW时间比较短。 2. 并发标记 非STW的过程&…...

【玩转google云】实战:如何在GKE上使用Helm安装和配置3节点的RabbitMQ集群

需求 因项目需要需要在Google Kubernetes Engine (GKE) 中使用Helm安装一个3节点的RabbitMQ集群,配置用户名和密码,开通公网访问的Web管理界面,指定namespace为mq,并使用5G的硬盘存储MQ的数据。 前提条件 GKE集群:确保你有一个运行中的GKE集群。Helm工具:确保已安装Hel…...

【神经网络】深度神经网络

深度神经网络(Deep Neural Network,简称DNN)是一种模仿人脑神经网络结构和工作原理的机器学习模型。它通过层级化的特征学习和权重调节,能够实现复杂任务的高性能解决方案。深度神经网络由多个神经元层组成,每个神经元…...

机器学习算法 —— K近邻(KNN分类)

🌟欢迎来到 我的博客 —— 探索技术的无限可能! 🌟博客的简介(文章目录) 目录 KNN的介绍和应用KNN的介绍1) KNN建立过程2) 类别的判定KNN的优点KNN的缺点KNN的应用实战KNN分类数据集 —— KNN分类库函数导入数据导入模型训练&可视化原理简析莺尾花数据集 —— KNN分…...

Thinkphp5内核流浪猫流浪狗宠物领养平台H5源码

Thinkphp5内核流浪猫流浪狗宠物领养平台H5源码 可封装APP,适合做猫狗宠物类的发信息发布,当然懂的修改一下,做其他信息发布也是可以的。 Thinkphp5内核流浪猫流浪狗宠物领养平台H5源码...

c++ 智能指针使用注意事项及解决方案

c11智能指针 shared_ptr介绍注意事项示例解决方案 weak_ptr特点示例 unique_ptr特点示例 shared_ptr 介绍 shared_ptr 是一种智能指针,用于自动管理动态分配的对象的生命周期。它通过引用计数机制来确保当最后一个 shared_ptr 指向一个对象时,该对象会…...

SQLite Delete 语句

SQLite Delete 语句 SQLite 的 DELETE 语句用于从表中删除数据。它是 SQL 数据库管理中非常基础且重要的操作之一。在使用 DELETE 语句时,可以删除表中的特定行,也可以删除整个表的数据。本文将详细介绍 SQLite 中的 DELETE 语句,包括其语法、用法以及如何安全地执行删除操…...

vue3的基本使用方法

【 vue3实例 】 【 0 】对象、方法和属性 对象(Object): 对象是编程中的一个数据结构,它可以包含多种数据类型,包括数字、字符串、布尔值、数组、其他对象等。对象通常由一系列属性和方法组成。在面向对象编程&…...

Java数据结构与算法(盛水的容器贪心算法)

前言 . - 力扣(LeetCode) 贪心算法(Greedy Algorithm)是一种在每一步选择中都采取当前状态下最优或最佳的选择,以期望通过一系列的局部最优选择达到全局最优解的算法。贪心算法的核心思想是贪心选择性质和最优子结构性质。 贪心算法的基本步骤 建立模型:将问题分解为一…...

MYSQL 数字(Aggregate)函数

目录 1、AVG() 2、MAX() 3、MIN() 4、SUM() 5、COUNT() 6、LIMIT() 1、AVG() 解释:返回数值列(字段)的平均值。 语法格式:SELECT AVG(column_name) FROM table_name 中文注释:select AVG(数值列/字段) from 表名 ; 用法&#xff1…...

【TensorFlow深度学习】如何处理不平衡数据集与欠采样、过采样技术

如何处理不平衡数据集与欠采样、过采样技术 如何处理不平衡数据集与欠采样、过采样技术:实现均衡学习的艺术1. 不平衡数据集的识别与评估2. 欠采样技术:减少多数类样本3. 过采样技术:增加少数类样本4. 集成采样策略:SMOTE +ENN 或 SMOTE +Tomek Links5. 评估与选择最佳策略…...

【考研数学】如何保证进度不掉队?暑假强化保姆级规划

数一125学长前来解答!一句话,跟对老师,抓基础,有计划的进行复习才是关键! 数学基础非常重要,包括高等数学、线性代数和概率论等基础知识点。要确保对这些基础知识有扎实的掌握。 按照教材的顺序&#xff…...

Vue3【二十一】Vue 路由模式(createWebHashHistory /createWebHistory )和RouterLink写法

Vue3【二十一】Vue 路由模式(createWebHashHistory /createWebHistory )和RouterLink写法 Vue3【二十一】Vue 路由模式和普通组件目录结构 createWebHistory history模式:url不带#号,需要后端做url适配 适合销售项目 利于seo crea…...

【交易策略】#22-24 残差资金流强度因子

【交易策略】#22-24 残差资金流强度因子...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​:下载安装 ​​De…...

Spring Security 认证流程——补充

一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...