当前位置: 首页 > news >正文

黄仁勋提到的机器人世界,还需要AI数据来“调教” | CVPR 2024

本周,CVPR 2024正在美国西雅图拉开序幕。今年CVPR论文投稿数再次创下新纪录,可想而知本届会议的火热。

从研究主题来看,具身智能这一大热点值得关注。

黄仁勋在COMPUTEX大会开幕前夕的演讲中预言:AI的下一个浪潮将是物理AI

即那些理解物理定律的AI机器人,尤其是人形机器人最有可能适应人类所构建的世界。

但随之而来的问题是,这背后需要海量的数据支持,尤其是人形机器人更为明显。因为人形机器人面临的场景多样,而且这些场景的数据采集不容易。

甚至有业界人士认为,当前具身智能最大的瓶颈就是缺乏数据。

其实不止于机器人场景,无论是构建具有强逻辑的AI模型,还是训练像GPT-4这样的大语言模型,都离不开大规模、高质量的数据集。

例如,GPT-4的模型训练就动用了大约13万亿个tokens的数据集,这无疑是一个天文数字。

在这样的数据需求下,我们自然会思考:

如此庞大的训练数据究竟从何而来?

AI行业数据的瓶颈,何解?

基于庞大数据和超高算力的“暴力美学”,是当前生成式人工智能的核心打法,也是以OpenAI为代表的一众企业的发展关键。

简单来说,在同等条件下,喂的数据越多,人工智能就越强。

海量、优质的数据争夺已经成为国家和企业间的无声战场。基于数字技术形成的通用数据、优质数据垄断,可能将成为这场数字拓荒当中,后发者无法逾越的天堑。在一定程度上可以说,掌握数据,就掌握了包括人工智能等众多未来产业的主导权。

但是从真实世界获取数据是一件困难重重的事。

Google在RT-1项目中的经历就是一个例证,在雄厚的资金和科研资源支持下,Google团队历时17个月,仅收集到13万条覆盖700多个任务的机器人数据,这些数据的泛化能力远未达到预期。

在这里插入图片描述

由此可见,获取真实数据难度大、耗时长、成本高,同时还存在现实世界数据采集在隐私合规和数据安全方面的挑战,难以满足人工智能大模型训练的需求,当前,“百模大战”如火如荼,头部企业竞相投身人工智能赛道,但有效数据不足,特别是高质量数据短缺,部分领域封闭式的数据生态给人工智能发展带来了掣肘。如何解决“数据瓶颈”是未来一段时期我们即将面临——或已经面临的挑战。

如何应对挑战,目前一家利用计算机技术生成数据的服务商非常值得关注,它是群核科技(酷家乐)创新实验室Koolab孵化出的Coohom Cloud

群核科技是国内最大的空间设计软件平台,Coohom Cloud利用其庞大的室内数据资源,结合高性能的渲染引擎和先进的数据处理技术,为AI行业“投喂”逼真且物理真实的2D、3D室内数据集等产品和服务。

群核科技平台每天会生成40万+3D设计方案,并沉淀了约3.6亿个3D模型****数据,涵盖家具、电器、生活用品等,在此基础上,群核科技与包括英国帝国理工大学、美国南加州大学浙江大学等高校联手推出了多种数据集,为室内环境理解,3D重构,机器人交互等研究提供的强大数据基础。

在这里插入图片描述

在2D图片渲染技术上,Coohom Cloud利用自研渲染引擎,在多样化的室内场景中,通过调整相机参数、行径轨迹、灯光条件等设置进行图片数据的采集,最终生成RGB、深度、语义、法向、点云等格式的2D数据集。这样的数据输出能力,使得Coohom Cloud每天能够产出30万组2D数据集,为AI智能体的导航、视觉感知、环境理解等能力提供了充足的训练素材。

群核科技怎么解?低成本+高质量

成本更低是数据获取必须要的优点,包括获取成本和经济成本,不少企业都在大量烧钱试图通过海量数据来满足AI模型训练需求,高额的投入和预期的不确定性,让资金的持续投入陷入困境。

为了提供更高性价比的数据服务方案,Coohom Cloud通过自研数据引擎,这是一套专为挖掘数据转化而设计的高效工具,可以高效的将设计平台沉淀数据库转化为AI训练的燃料。它不仅能够定制化输出针对不同行业所需要的数据集,还能实现室内场景的数字化生成,与NVIDIA Isaac Sim、Unreal Engine、Blender等专业仿真器和渲染引擎无缝对接。

所有流程全部利用计算机技术实现,用户对于数据的使用会更加便捷和直观,无需再耗费大量人力物力去采集获取数据,从而可以将更多的重心放在模型调优上。

图片

当然,数据想要投入商用,除了数据量、成本优势以外,更需要保证的是高质量,这将决定数据产业的未来发展面有多大。

在这一点上,Coohom Cloud是怎么考虑的呢?

1、物理性质增强

在人形机器人的发展道路上,环境交互能力是其智能化的关键。比如自如开关门、精准取放物体、甚至叠放衣物等。

以NVIDIA Isaac Sim仿真平台项目为例,通过创建一个包含物理属性的逼真3D环境,让机器人能够在虚拟世界中学习如何与物体互动、预测物理事件,甚至在虚拟世界中进行探索和导航。在这样的虚拟环境中,机器人可以进行无数次的交互测试,无需担心物理损伤或环境限制,从而大幅降低了训练成本,同时提高了训练的安全性和可重复性。

Coohom Cloud正是基于这样的理念,利用Isaac Sim,Unreal Engine等为代表的的仿真平台,为机器人训练提供了定制化的场景和交互模型。这些数据不仅在视觉上逼真,更重要的是,它们具备真实的物理属性——铰链、滑轨等组件可以进行旋转和平移,同时模型还拥有真实的密度、摩擦力和弹性等物理状态信息。这使得机器人能够在物理真实的虚拟环境下,以极低的成本获取大量的训练数据,测试并优化其性能。

图片

2、场景环境增强

在AI的世界里,光线就像是那个决定成败的细节,特别是在视觉感知任务中,光线条件对AI的识别和分析能力起着至关重要的作用。

拿上文提到的InteriorNet来说,这一大规模多传感器真实感室内场景数据集,通过提供不同光照环境下的高真实感渲染图像,展示了环境增强与多样化在提升AI性能方面的重要性。服务类机器人在面对室内外光线变化时,可能会遇到识别障碍,因此,拥有一个涵盖广泛光照条件的数据集对于训练AI以适应各种环境至关重要。

Coohom Cloud为虚拟室内场景中的每个灯源设定详细参数,实现个性化的灯光环境控制,让机器人在不同的光照环境下都能“看”得清清楚楚,学得明明白白。

图片

除了光照条件的多样性,Coohom Cloud还通过Domain Randomization技术,进一步增强了场景环境的复杂性,就像是给机器人的训练场来了一场“大变身”。这项功能能够根据不同的训练需求,灵活切换模型的表面材质,比如将大理石地面替换为木质地板,调整不同反射效果,从而在虚拟环境中模拟出真实世界的多样性和复杂性。让机器人的训练更加贴近现实,增强了它的适应性和泛化能力。

图片

3、高效标注系统

AI领域中的数据标注是模型性能的关键因素,但传统的人工标注方式劳动密集且耗时。

Coohom Cloud利用先进的合成数据生成技术,可以根据研究者需求定制化分割和标注数据。例如,处理卧室场景的3D模型时,系统能细分为床、枕头、毛毯等基础要素,并生成精准语义标签,提高数据准确性并满足需求,从而提升模型认知精度。这种方式不仅减少了人工标注工作量,也使研究者能更专注于模型创新和优化,提高数据处理效率,为AI技术发展注入新活力。

图片

此外,在隐私、安全法规等问题上,Coohom Cloud采取的合成数据安全策略亦可以避免接触任何真实用户数据,安全审核机制用于检查数据是否合规,并针对交付使用的数据进行相关授权管理,从而确保数据的安全使用。在生态链上,Coohom Cloud也串联了优秀的设计者和研究者,针对AI需求,开发更高效的工具来促进设计生态向AI前沿融合。

产业级应用时刻,正在到来

不论是诸多机构的预测数据,还是资本机构的”投注“,亦或是产业侧的实际应用,都可以看出数据服务已经从科研场景逐步走向市场化。也有越来越多玩家选择加入。

不过在人工智能领域,数据的质量和应用的实际效果比盲目堆砌更为关键。那么,Coohom Cloud的海量室内数据集是如何落地到不同的行业场景中的呢?

2022年底,群核科技KooLab与英特尔实验室、西班牙计算机视觉中心以及慕尼黑工业大学共同打磨的SPEAR智能仿真平台,面向开发者全面开放,帮助开发人员加快对不同智能机器人的训练和验证。

在整个项目中,Coohom Cloud团队提供超300个场景、超17000个模型,为仿真器的研究提供了数据上的神助攻,让研究者能便捷的在虚拟环境中测试机器人性能。

在这里插入图片描述

英特尔首席科学家Mike Roberts赞叹Coohom Cloud的高质量数据:

不仅加速了具身智能研究,还为仿真器项目的落地提供了全方位的数据保障。

再以清洁机器人产品为例,在室内为主的业务场景下,积累边缘场景数据需要大量时间,这会直接影响到C端用户的产品体验,因此解决机器人场景边缘场景问题成了产品提高竞争力的关键。

清洁机器人的边缘场景主要包含一些难以收集的宠物粪便,果壳碎屑等障碍物,特殊狭窄的过道、高反光的地板玻璃以及强暗光环境下的数据等,以前为了采集数据,厂家得组建个数十人团队,耗时数月,还得外包给第三方,整个过程繁琐又烧钱,数据质量还不一定达标。

Coohom Cloud的方案,让企业从模型素材到语义标注,再到数据结构处理全流程把控,为用户关注的边缘场景,专门打造特殊的室内虚拟环境,并通过调整光照参数,实现场景多样性衍生,在45个工作日即生成了数万组高质量的3D模型数据集和百万组精细化图片数据,数据交付即可用,帮助企业大幅减少数据侧投入,提高AI项目进度。

图片

当AI大模型和人形机器人成为科技界的热议话题,数据已然成为了这个时代的核心资产。Coohom Cloud正以其强大的数据生成技术,为AI的多样化应用需求提供支撑,推动行业向更广泛的智能化发展迈进。

One More Thing

我们期待着Coohom Cloud在未来能够持续深化其技术,不断探索新的领域。

而就在6月17日至6月21日,Coohom Cloud团队将在西雅图举办的2024年CVPR会议上,展位号1637,展示他们的最新成果。如果你对数据服务充满兴趣,不如亲临现场与Coohom Cloud团队深入交流,共同见证AI数据服务的未来。

官网主页:www.coohomcloud.com

联系方式:cloud@coohom.com

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

相关文章:

黄仁勋提到的机器人世界,还需要AI数据来“调教” | CVPR 2024

本周,CVPR 2024正在美国西雅图拉开序幕。今年CVPR论文投稿数再次创下新纪录,可想而知本届会议的火热。 从研究主题来看,具身智能这一大热点值得关注。 黄仁勋在COMPUTEX大会开幕前夕的演讲中预言:AI的下一个浪潮将是物理AI。 即…...

语言中 函数用地址传参的好处

在C语言中,使用地址传参(传递指针)有以下几个好处: 1. **减少内存开销**: - 传递一个指针(通常是一个地址)比传递一个大的结构体或数组要高效得多,因为指针通常是一个固定大小&a…...

Python进阶二: NumPy基础:数组和矢量计算

二、NumPy基础:数组和矢量计算 本文源自微博客(www.microblog.store),且以获得授权 NumPy(Numerical Python的简称)是Python数值计算最重要的基础包。大多数提供科学计算的包都是用NumPy的数组作为构建基础。 NumPy的部分功能如下&#xf…...

2024北京智源大会开幕,智源推出大模型全家桶及全栈开源技术基座新版图,大模型先锋集结共探AGI之路

2024年6月14日,第六届“北京智源大会”在中关村展示中心开幕。 北京智源大会是智源研究院主办的“AI内行顶级盛会”,以“全球视野、思想碰撞、前沿引领”为特色,汇聚海内外研究者分享研究成果、探寻前沿知识、交流实践经验。2024北京智源大会…...

李光明从程序员到架构师的逆袭之路(三)

我,李光明,正在参加一个重要的技术会议。会场上,我们团队正在讨论着接口设计以及接口设计模式。我深知,一个好的接口设计应当遵循简洁、清晰、可扩展的原则。比如,在设计一个用户信息查询接口时,我们会定义…...

基于Spring Boot+VUE毕业生信息招聘平台

系统详细设计 1管理员功能模块 管理员登录,管理员通过输入用户名、密码、角色等信息进行系统登录,如图1所示。 图1管理员登录界面图 管理员登录进入毕业生信息招聘平台可以查看首页、个人中心、企业管理、空中宣讲会管理、招聘岗位管理、毕业生管理、个…...

设计模式-创建型-04-建造者模式

1、盖房项目需求 1)需要建房子:这一过程为打桩、砌墙、封顶2)房子有各种各样的,比如普通房,高楼,别墅,各种房子的过程虽然一样,但是要求不要相同的3)请编写程序&#xf…...

jenkins中配置参数化,并在python脚本接收参数实现参数化执行

在公司内进行Monkey测试脚本集成jenkins时,因为需要指定公司内不同的app进行测试。那么可以有两种方法解决该问题,要么创建多个脚本文件,多个jenkins jobs,进行构建。要么可以在配置job时通过传参数的方式,在python脚本…...

【SCAU数据挖掘】数据挖掘期末总复习题库应用题及解析

1. 给定圆的半径为e ,令 MinPts3,考虑下面两幅图。 (1)哪些对象是核心对象? m,p,o,r(因为这些核心对象在半径e的范围内都至少包含MinPts3个对象) (2)哪些对象是直接密度可达的? 对象q是…...

ADB->获取当前正在显示的Fragment和Activity的ADB命令

获取当前显示的Activity adb shell "dumpsys window | grep mCurrentFocus"指令拆解adb shell:启动一个远程shell来运行设备上的命令dumpsys window:获取当前窗口管理器的信息|:将前一个命令的输出作为后一个命令的输入grep mCurr…...

C#——集合List

list list集合和Arraylist基本一样,只不过list是C#2.0版本新加入的范型类型。list也可以通过索引操作里面的元素,也有对list进行增删改查 概念 Array静态数组 * Arraylist 动态数组 * list集合 * 1. Array是容量是固定的,但是ArrayList和…...

小程序-生命周期(2) 应用周期/页面周期

一.应用周期 应用周期指的是小程序:启动->运行->销毁的整个过程。 应用周期伴随一些函数来进行控制,这些函数卸载app.js里面的App方法里。 分别由onLaunch, onShow,onHide依次进行。 onLaunch:初始化的时候运行…...

什么是模板字符串?

模板字符串(Template Literals)是ES6(ECMAScript 2015)中引入的一种新的字符串表示方法,允许我们嵌入表达式,并在运行时将它们转换为字符串。模板字符串使用反引号()来定义&#xff…...

服务器数据恢复—热备盘未完全启用导致raid5阵列崩溃的数据恢复案例

服务器存储故障: 一台EMC某型号存储由于存储中raid5阵列出现故障导致服务器崩溃,由于数据涉密,需要工程师到现场恢复数据。 服务器数据恢复工程师到现场后对数据进行检测,经过检测发现服务器崩溃是由于raid中某些硬盘掉线所导致。…...

微服务项目雪崩的解决思路

雪崩的介绍 雪崩是微服务中某个服务挂了,无法返回请求,导致调用改服务的上层服务也故障,最终形成连锁反应,导致整个系统故障。 解决思路 一般有四种思路: 1.最简单的就是超时处理,即超过一段时间就返回…...

汇编语言程序设计 - 新建一个文件:d:\abc.txt,从键盘输入文件的内容(不超过100个字符)

80x86汇编习题 题目描述:编写一个程序,新建一个文件:d:\abc.txt,从键盘输入文件的内容(不超过100个字符) 思路: 1,定义好文件名,记得末尾0 2,定义好缓冲区…...

【Linux】进程间通信2——命名管道

1. 命名管道(FIFO) 1.1. 基本概念 简单,给匿名管道起个名字就变成了命名管道 那么如何给 匿名管道 起名字呢? 结合文件系统,给匿名管道这个纯纯的内存文件分配 inode,将文件名与之构建联系,关键点在于不给它分配 D…...

语音翻译软件app排名来啦,这些工具让旅游畅通无阻

#这个夏天我们一定要去看海# 出国旅行时,语言障碍常常是最让人头疼的问题之一。 特别是在像缅甸这样英语并不普及的国家,基本的日常交流,比如用餐或问路,都可能成为难题。 然而,随着技术的进步,现在有了…...

nginx脚本原理if指令实现详解

之前的文章我们探讨了nginx的变量,接着就是脚本原理,也就是复杂变量,理解了前面的实现原理,接下来了解if,break,return,set就要简单多。 指令有不少,没必要全部探讨,了解了其中之一…...

数据提取与治理:企业数字化转型的双引擎

在当今数字化浪潮中,企业正面临着前所未有的挑战和机遇。为了在这场变革中立于不败之地,数字化转型成为了企业不可或缺的战略选择。而在数字化转型的众多关键要素中,数据提取与治理技术无疑扮演着至关重要的角色,它们如同双引擎一…...

华为云AI开发平台ModelArts

华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

uniapp中使用aixos 报错

问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

docker 部署发现spring.profiles.active 问题

报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...