排序题目:有序数组的平方
文章目录
- 题目
- 标题和出处
- 难度
- 题目描述
- 要求
- 示例
- 数据范围
- 进阶
- 解法一
- 思路和算法
- 代码
- 复杂度分析
- 解法二
- 思路和算法
- 代码
- 复杂度分析
题目
标题和出处
标题:有序数组的平方
出处:977. 有序数组的平方
难度
2 级
题目描述
要求
给定按非递减顺序排序的整数数组 nums \texttt{nums} nums,返回每个数字的平方组成的新数组,要求也按非递减顺序排序。
示例
示例 1:
输入: nums = [-4,-1,0,3,10] \texttt{nums = [-4,-1,0,3,10]} nums = [-4,-1,0,3,10]
输出: [0,1,9,16,100] \texttt{[0,1,9,16,100]} [0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100] \texttt{[16,1,0,9,100]} [16,1,0,9,100]。排序后,数组变为 [0,1,9,16,100] \texttt{[0,1,9,16,100]} [0,1,9,16,100]。
示例 2:
输入: nums = [-7,-3,2,3,11] \texttt{nums = [-7,-3,2,3,11]} nums = [-7,-3,2,3,11]
输出: [4,9,9,49,121] \texttt{[4,9,9,49,121]} [4,9,9,49,121]
数据范围
- 1 ≤ nums.length ≤ 10 4 \texttt{1} \le \texttt{nums.length} \le \texttt{10}^\texttt{4} 1≤nums.length≤104
- -10 4 ≤ nums[i] ≤ 10 4 \texttt{-10}^\texttt{4} \le \texttt{nums[i]} \le \texttt{10}^\texttt{4} -104≤nums[i]≤104
- nums \texttt{nums} nums 已按非递减顺序排序
进阶
计算每个元素的平方并对新数组排序的解法很简单,你可以使用不同的方法找到时间复杂度 O(n) \texttt{O(n)} O(n) 的解法吗?
解法一
思路和算法
最直观的解法是依次计算数组 nums \textit{nums} nums 中的每个元素的平方并存入新数组中,然后对新数组按非递减顺序排序,即可得到排序后的新数组。
代码
class Solution {public int[] sortedSquares(int[] nums) {int length = nums.length;int[] squares = new int[length];for (int i = 0; i < length; i++) {squares[i] = nums[i] * nums[i];}Arrays.sort(squares);return squares;}
}
复杂度分析
-
时间复杂度: O ( n log n ) O(n \log n) O(nlogn),其中 n n n 是数组 nums \textit{nums} nums 的长度。计算数组 nums \textit{nums} nums 中的每个元素的平方并存入新数组需要 O ( n ) O(n) O(n) 的时间,对新数组排序需要 O ( n log n ) O(n \log n) O(nlogn) 的时间,因此时间复杂度是 O ( n log n ) O(n \log n) O(nlogn)。
-
空间复杂度: O ( log n ) O(\log n) O(logn),其中 n n n 是数组 nums \textit{nums} nums 的长度。对新数组排序需要 O ( log n ) O(\log n) O(logn) 的递归调用栈空间。注意返回值不计入空间复杂度。
解法二
思路和算法
解法一没有利用到数组 nums \textit{nums} nums 已经按非递减顺序排序的条件,因此需要对新数组排序,时间复杂度是 O ( n log n ) O(n \log n) O(nlogn)。如果利用数组 nums \textit{nums} nums 已经按非递减顺序排序的条件,则不需要对新数组排序,将时间复杂度降低到 O ( n ) O(n) O(n)。
由于一个数的平方大小与这个数的绝对值有关,因此考虑数组 nums \textit{nums} nums 中的绝对值最大元素与绝对值最小元素可能出现的位置。
数组 nums \textit{nums} nums 按非递减顺序排序,可能有以下三种情况:
-
数组 nums \textit{nums} nums 的所有元素都是非负数,元素顺序为绝对值非递减顺序,首个元素的绝对值最小,末尾元素的绝对值最大;
-
数组 nums \textit{nums} nums 的所有元素都是非正数,元素顺序为绝对值非递增顺序,首个元素的绝对值最大,末尾元素的绝对值最小;
-
数组 nums \textit{nums} nums 中既有正数也有负数,首个元素或末尾元素的绝对值最大。
对于上述三种情况中的任意一种情况,绝对值最大的元素一定是数组 nums \textit{nums} nums 的首个元素或末尾元素。因此可以从数组 nums \textit{nums} nums 的两端向中间遍历,按照绝对值从大到小的顺序依次遍历数组 nums \textit{nums} nums 的元素,计算每个元素的平方,反向填入新数组。
具体做法是,维护两个下标 index 1 \textit{index}_1 index1 和 index 2 \textit{index}_2 index2,初始时 index 1 \textit{index}_1 index1 指向数组 nums \textit{nums} nums 的首个元素, index 2 \textit{index}_2 index2 指向数组 nums \textit{nums} nums 的末尾元素。遍历过程中,比较 nums [ index 1 ] \textit{nums}[\textit{index}_1] nums[index1] 和 nums [ index 2 ] \textit{nums}[\textit{index}_2] nums[index2] 这两个元素的绝对值:
-
如果 nums [ index 1 ] \textit{nums}[\textit{index}_1] nums[index1] 的绝对值大于 nums [ index 2 ] \textit{nums}[\textit{index}_2] nums[index2] 的绝对值,则将 nums [ index 1 ] \textit{nums}[\textit{index}_1] nums[index1] 的平方填入新数组,将 index 1 \textit{index}_1 index1 加 1 1 1;
-
如果 nums [ index 1 ] \textit{nums}[\textit{index}_1] nums[index1] 的绝对值小于等于 nums [ index 2 ] \textit{nums}[\textit{index}_2] nums[index2] 的绝对值,则将 nums [ index 2 ] \textit{nums}[\textit{index}_2] nums[index2] 的平方填入新数组,将 index 2 \textit{index}_2 index2 减 1 1 1。
由于遍历数组 nums \textit{nums} nums 的过程中,每次遍历的元素都是尚未遍历的元素中的绝对值最大的元素,因此遍历元素的顺序是绝对值非递增顺序,即元素的平方非递增顺序。将遍历的元素的平方反向填入新数组,新数组中的元素顺序为非递减顺序。
代码
class Solution {public int[] sortedSquares(int[] nums) {int length = nums.length;int[] squares = new int[length];int index1 = 0, index2 = length - 1;for (int i = length - 1; i >= 0; i--) {if (Math.abs(nums[index1]) > Math.abs(nums[index2])) {squares[i] = nums[index1] * nums[index1];index1++;} else {squares[i] = nums[index2] * nums[index2];index2--;}}return squares;}
}
复杂度分析
-
时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 nums \textit{nums} nums 的长度。需要遍历数组 nums \textit{nums} nums 中的每个元素一次。
-
空间复杂度: O ( 1 ) O(1) O(1)。注意返回值不计入空间复杂度。
相关文章:
排序题目:有序数组的平方
文章目录 题目标题和出处难度题目描述要求示例数据范围进阶 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题:有序数组的平方 出处:977. 有序数组的平方 难度 2 级 题目描述 要求 给定按非递减顺序排序的整…...

PPT可以转换成Word吗?归纳了三种转换方式
PPT可以转换成Word吗?在当今快节奏的工作和学习环境中,不同格式文件之间的转换变得日益重要。PPT作为演示文稿制作的首选工具,广泛应用于会议演讲、教育培训等多个场景,而Word则是文档编辑与编排的基石。为了便于进一步编辑、分享…...

分布式锁三种方案
基于数据库的分布式锁(基于主键id和唯一索引) 1基于主键实现分布式锁 2基于唯一索引实现分布式锁 其实原理一致,都是采用一个唯一的标识进行判断是否加锁。 原理:通过主键或者唯一索性两者都是唯一的特性,如果多个…...

【HarmonyOS NEXT】har 包的构建生成过程
Har模块文件结构 构建HAR 打包规则 开源HAR除了默认不需要打包的文件(build、node_modules、oh_modules、.cxx、.previewer、.hvigor、.gitignore、.ohpmignore)和.gitignore/.ohpmignore中配置的文件,cpp工程的CMakeLists.txt,…...
从0开发一个Chrome插件:项目实战——翻译插件(附带申请谷歌翻译、百度翻译教程)
前言 这是《从0开发一个Chrome插件》系列的第十八篇文章,本系列教你如何从0去开发一个Chrome插件,每篇文章都会好好打磨,写清楚我在开发过程遇到的问题,还有开发经验和技巧。 专栏: 从0开发一个Chrome插件:什么是Chrome插件?从0开发一个Chrome插件:开发Chrome插件的必…...

查看nginx安装/配置路径,一个服务器启动两个nginx
查看nginx安装/配置路径 查看nginx的pid: ps -ef | grep nginx查看pid对应服务的启动路径 ll /proc/2320/exe使用检查配置文件命令,查看配置文件位置 /usr/local/nginx/sbin/nginx -t一个服务启动两个nginx 拷贝一份程序,cpbin是我自己创…...
JavaScript中 Map与reduce的应用
1. Map:映射新世界 Map构造函数创建一个新Map对象,它允许你以键值对的形式存储数据,提供了一种更加灵活的数据结构。与传统的对象相比,Map允许任何值(包括对象)作为键,而且具有更好的性能表现。…...
1688商品详情API:一键解锁海量批发数据
引言 1688作为阿里巴巴旗下的B2B交易平台,拥有庞大的商品数据库和丰富的供应商资源。对于想要获取商品详细信息的开发者和企业而言,1688提供的API接口是获取一手数据的关键途径。本文将详细介绍如何使用1688商品详情API,包括注册、获取API密…...

C#结合JS 修改解决 KindEditor 弹出层问题
目录 问题现象 原因分析 范例运行环境 解决问题 修改 kindeditor.js C# 服务端更新 小结 问题现象 KindEditor 是一款出色的富文本HTML在线编辑器,关于编辑器的详细介绍可参考我的文章《C# 将 TextBox 绑定为 KindEditor 富文本》,这里我们讲述在…...

二开的精美UI站长源码分享论坛网站源码 可切换皮肤界面
二开的精美UI站长源码分享论坛网站源码 可切换皮肤界面 二开的精美UI站长源码分享论坛网站源码 可切换皮肤界面...

【diffusers极速入门(三)】生成的图像尺寸与 UNet 和 VAE 之间的关系
先上结论,一句话总结即: SD 图片的输入\输出尺寸(高或宽) Unet 输入\输出的样本尺寸(高或宽) x VAE 的缩放尺寸 在使用生成模型时,特别是图像生成任务中,理解 UNet 和 VAE…...

react实现窗口悬浮框,可拖拽、折叠、滚动
1、效果如下 2、如下两个文件不需要修改 drag.js import React from "react"; import PropTypes from "prop-types";export default class DragM extends React.Component {static propTypes {children: PropTypes.element.isRequired};static defaultP…...

52【场景作图】空间感
参考 场景绘制,画面空间感如何拉开?分分钟就能学会的场景优化思路更新啦!_哔哩哔哩_bilibili https://www.bilibili.com/video/BV1pa411J7Ps/?spm_id_from333.337.search-card.all.click&vd_source20db0c4e2d303527ed13c4b9cdf698ec 1 …...

SpringBoot系列之搭建WebSocket应用
SpringBoot系列之ServerEndpoint方式开发WebSocket应用。在实时的数据推送方面,经常会使用WebSocket或者MQTT来实现,WebSocket是一种不错的方案,只需要建立连接,服务端和客户端就可以进行双向的数据通信。很多网站的客户聊天&…...

RK3568技术笔记十四 Ubuntu创建共享文件夹
单击“虚拟机”,单击“设置”,如图所示: 单击“选项”,选择“总是启用(E)”,单击“添加”,如图所示: 单击“下一步”,如图所示: 单击“浏览”添加…...
JavaScript 获取地理位置 Geolocation
在现代的 web 应用程序中,获取用户的地理位置信息是一项常见的需求。这可以用于提供个性化内容、本地化服务或者基于位置的功能。HTML5 引入了 Geolocation API,使得从浏览器中获取地理位置信息变得非常简单。 1. Geolocation API 简介 Geolocation AP…...

android串口助手apk下载 源码 演示 支持android 4-14及以上
android串口助手apk下载 1、自动获取串口列表 2、打开串口就开始接收 3、收发 字符或16进制 4、默认发送at\r\n 5、android串口助手apk 支持android 4-14 (Google seral port 太老) 源码找我 需要 用adb root 再setenforce 0进入SELinux 模式 才有权限…...

windows11 生产力工具配置
一、系统安装 官方windows11.iso镜像文件安装操作系统时,会强制要求联网验证,否则无法继续安装操作系统,跳过联网登录账号的方式为:按下【shiftF10】快捷键,调出cmd命令窗口,输入命令 OOBE\BYPASSNRO 等…...

Nacos配置中心不可用会有什么影响
服务端: Nacos的数据存储接口 com.alibaba.nacos.config.server.service.DataSourceService 有两种实现: 如果指定了mysq 作为数据库,则必须使用 mysql 如果是 集群方式部署Nacos,则必须使用mysql 如果是单例方式部署 并且 没…...

AI时代下的自动化代码审计工具
代码审计工具分享 吉祥学安全知识星球🔗除了包含技术干货:Java代码审计、web安全、应急响应等,还包含了安全中常见的售前护网案例、售前方案、ppt等,同时也有面向学生的网络安全面试、护网面试等。 这两年一直都在提“安全左移”&…...

centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...