当前位置: 首页 > news >正文

【机器学习】线性回归:从基础到实践的深度解析


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

  • 线性回归:从基础到实践的深度解析
    • 引言
    • 一、线性回归基础
      • 1.1 定义与目的
      • 1.2 简单线性回归
      • 1.3 多元线性回归
    • 二、数学原理
      • 2.1 最小二乘法
      • 2.2 模型评估
    • 三、实现方法
      • 3.1 手动实现
      • 3.2 利用库函数
    • 四、实际应用中的考虑
      • 4.1 特征选择与工程
      • 4.2 正则化
      • 4.3 模型评估与调优
    • 五、总结与展望

线性回归:从基础到实践的深度解析

在这里插入图片描述

引言

线性回归作为统计学习和机器学习领域的基石之一,自19世纪末由Francis Galton和Carl Pearson提出以来,一直是数据分析、预测建模不可或缺的工具。它通过建立输入特征与连续目标变量之间的线性关系模型,为我们提供了一种理解和预测世界现象的强大手段。本文将深入浅出地介绍线性回归的基本概念、数学原理、实现方法以及在实际应用中的注意事项,力求为读者构建一个全面而深刻的理解框架。

一、线性回归基础

1.1 定义与目的

线性回归(Linear Regression)是一种预测分析模型,其基本思想是利用一个或多个自变量(输入特征)来预测或解释一个连续型因变量(目标变量)。简而言之,线性回归试图找到一个最佳拟合直线(或多维空间中的超平面),使得所有数据点到该直线的偏差平方和最小。

1.2 简单线性回归

简单线性回归是最基础的形式,仅涉及一个自变量 x x x和一个因变量 y y y。其模型可以表示为:
y = β 0 + β 1 x + ϵ y = \beta_0 + \beta_1x + \epsilon y=β0+β1x+ϵ
其中, β 0 \beta_0 β0是截距项, β 1 \beta_1 β1是斜率, ϵ \epsilon ϵ是误差项,反映了数据中的随机波动。

1.3 多元线性回归

在这里插入图片描述

当存在两个或更多自变量时,模型扩展为多元线性回归:
y = β 0 + β 1 x 1 + β 2 x 2 + . . . + β n x n + ϵ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + ... + \beta_nx_n + \epsilon y=β0+β1x1+β2x2+...+βnxn+ϵ
这里, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn代表多个自变量, β 1 , β 2 , . . . , β n \beta_1, \beta_2, ..., \beta_n β1,β2,...,βn是各自变量的系数。

二、数学原理

2.1 最小二乘法

在这里插入图片描述

最小二乘法是线性回归中常用的参数估计方法。其核心思想是通过最小化残差平方和(RSS: Residual Sum of Squares)来确定模型参数:
RSS = ∑ i = 1 n ( y i − ( β 0 + β 1 x i 1 + . . . + β n x i n ) ) 2 \text{RSS} = \sum_{i=1}^{n}(y_i - (\beta_0 + \beta_1x_{i1} + ... + \beta_nx_{in}))^2 RSS=i=1n(yi(β0+β1xi1+...+βnxin))2
通过求导数并令导数等于零,可以解得参数 β 0 , β 1 , . . . , β n \beta_0, \beta_1, ..., \beta_n β0,β1,...,βn的最优值。

2.2 模型评估

  • 均方误差(MSE):衡量预测值与真实值之间差异的平均程度。
  • 决定系数(R²):表示模型解释的变异量占总变异量的比例,值越接近1说明模型拟合度越高。

三、实现方法

3.1 手动实现

手动实现线性回归包括数据预处理、梯度下降或正规方程求解等步骤。以梯度下降为例,迭代更新参数直到收敛:
β j : = β j − α ∂ ∂ β j RSS \beta_j := \beta_j - \alpha \frac{\partial}{\partial \beta_j}\text{RSS} βj:=βjαβjRSS
其中, α \alpha α是学习率,控制每次迭代的步长。

3.2 利用库函数

在Python中,可以使用scikit-learn库轻松实现线性回归:

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

四、实际应用中的考虑

4.1 特征选择与工程

  • 相关性分析:筛选与目标变量高度相关的特征。
  • 多项式特征:对非线性关系进行转换,增强模型表达能力。

4.2 正则化

  • L1正则化(Lasso回归):倾向于产生稀疏解,可用于特征选择。
  • L2正则化(Ridge回归):减少模型复杂度,避免过拟合。
    在这里插入图片描述

4.3 模型评估与调优

  • 交叉验证:确保模型泛化性能。
  • 网格搜索:自动寻找最佳超参数组合。

五、总结与展望

线性回归以其简单直观、易于理解和实现的特点,在金融、医疗、社会科学等多个领域发挥着重要作用。然而,面对复杂的数据关系,非线性模型如支持向量机、神经网络等可能提供更好的解决方案。未来,结合深度学习技术的线性回归变体,以及在大数据环境下的高效实现,将继续推动这一经典模型的发展,拓展其应用边界。

通过本文的介绍,希望能帮助读者建立起线性回归的坚实理论基础,并激发进一步探索和应用的兴趣。随着技术的不断进步,线性回归及其衍生方法将持续为解决实际问题提供强大的支持。

End

相关文章:

【机器学习】线性回归:从基础到实践的深度解析

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 线性回归:从基础到实践的深度解析引言一、线性回归基础1.1 定义与目…...

短视频开源项目MoneyPrinterTurbo:AI副业搞起来,视频制作更轻松!

目录 引言一、MoneyPrinterTurbo简介二、MoneyPrinterTurbo的核心功能三、MoneyPrinterTurbo的未来发展四、MoneyPrinterTurbo与AI副业五、部署实践1、克隆代码2、创建虚拟环境3、安装依赖4、安装好 ImageMagick5、端口映射6、启动Web界面7、模型配置8、填写主题9、视频生成10、…...

【JAVA】SpringBoot + skywalking 将接口的入参、出参、异常等信息上报到skywalking 链路追踪服务器上

【JAVA】SpringBoot skywalking 将接口的入参、出参、异常等信息上报到skywalking 链路追踪服务器上 1.下载SkyWalking APM https://skywalking.apache.org/downloads/ jdk8 不支持 SkyWalking APM 9.3.0以上版本,所以这里我们下载 9.3.0版本 2.下载 Java Agent …...

[xmake]构建静态库和动态库

xmake 静态库和动态库 在xmake中创建静态库和动态库的方法非常相似。以下是创建静态库和动态库的基本步骤: 创建xmake工程文件(xmake.lua)。 配置工程属性,包括工程名、版本等。 添加源代码文件到工程中。 设置是创建静态库还…...

功能测试 之 单模块测试----轮播图、登录、注册

单功能怎么测? 需求分析 拆解测试点 编写用例 1.轮播图 (1)需求分析 位置:后台--页面--广告管理---广告列表(搜索index页面增加广告位2) 操作完成后需要点击admin---更新缓存,前台页面刷新生效 (2)拆解…...

MyBatis-PageHelper 源码解说

归档 GitHub: MyBatis-PageHelper-源码解说 总说明 源码仓库: https://github.com/pagehelper/Mybatis-PageHelper克隆:git clone https://github.com/pagehelper/Mybatis-PageHelper.git切分支(tag):git checkout m…...

基于uni-app和图鸟UI的智慧校园圈子小程序开发实践

摘要: 随着教育信息化和“互联网教育”的快速发展,智慧校园建设已成为推动校园管理现代化、提高教育教学质量的重要手段。本文介绍了基于uni-app和图鸟UI开发的智慧校园圈子小程序,旨在通过一站式服务、个性化定制、数据互通和安全可靠等特点…...

STM32 keil工程移植到Visual Studio Code环境中编译

1、GCC Vscode 搭建 STM32 开发环境 GCC Vscode 搭建 STM32 开发环境(一)- 环境部署 - 知乎 (zhihu.com) 2、在原有keil工程下找到原本CUBEMX生成的.ioc工程文件 3、将.ioc文件复制一个新的文件夹下双击打开工程,将IDE选为Makefile&…...

细说CountDownLatch

CountDownLatch是Java中提供的一个同步辅助类,它允许一个或多个线程等待其他线程完成操作。在面试中,面试官经常会询问候选人是否在实际项目中使用过CountDownLatch,以评估其对多线程编程和并发控制的理解和经验。本文将详细介绍CountDownLat…...

java-克隆应用

5.2 创建复杂对象 对于某些复杂对象,通过克隆来创建其副本比通过构造函数创建新实例更加高效。例如,当对象包含大量字段或需要进行复杂初始化时,克隆可以显著提高性能。 java 复制代码 class ComplexObject implements Cloneable { private …...

RPC协议

3.8 既然有 HTTP 协议,为什么还要有 RPC 假设我们需要在 A 电脑的进程发一段数据到 B 电脑的进程,我们一般会在代码里使用 Socket 进行编程。 这时候,我们可选项一般也就 TCP 和 UDP 二选一。TCP 可靠,UDP 不可靠。 类似下面这…...

医疗器械3D全景展会在线漫游创造数字化时代的展览新篇章

在数字化浪潮的引领下,VR虚拟网上展会正逐渐成为企业展示品牌实力、吸引潜在客户的首选平台。我们与广交会携手走过三年多的时光,凭借优质的服务和丰富的经验,赢得了客户的广泛赞誉。 面对传统展会活动繁多、企业运营繁忙的挑战,许…...

IP_Endpoint类型在CAPL中的使用

在使用TCP/IP协议栈通信时,创建Socket套接字调用接口函数实现通信的整个过程成为一种主流且便捷的方式。在CAPL中,Client需要创建TCP或UDP套接字,绑定自己的IP地址和一个端口号,作为自己的通信端点。 on key c {clientsocket = tcpOpen(ipGetAddressAsNumber("192.16…...

数据资产与用户体验优化:深入挖掘用户数据,精准分析用户需求与行为,优化产品与服务,提升用户体验与满意度,打造卓越的用户体验,赢得市场认可

一、引言 在数字化时代,数据已经成为企业最宝贵的资产之一。通过深入挖掘和分析用户数据,企业能够精准把握用户需求和行为,从而优化产品与服务,提升用户体验和满意度。这不仅有助于企业在激烈的市场竞争中脱颖而出,还…...

基于TCAD与紧凑模型结合方法探究陷阱对AlGaN/GaN HEMTs功率附加效率及线性度的影响

来源:Investigation of Traps Impact on PAE and Linearity of AlGaN/GaN HEMTs Relying on a Combined TCAD–Compact Model Approach(TED 24年) 摘要 本文提出了一种新型建模方法,用于分析GaN HEMTs的微波功率性能。通过结合工…...

具身智能概念

具身智能作为人工智能发展的一个重要分支,伴随着大模型技术的爆发与硬件成本的降低,即软硬件技术走向成熟,正在成为广泛关注的热门,一时之间,具身智能机器人也成为了科技界新的风向标。 什么是具身智能? …...

C++ 43 之 自增运算符的重载

#include <iostream> #include <string> using namespace std;class MyInt{friend ostream& operator<< (ostream& cout , MyInt& int1); public:MyInt(){this->m_num 0;}// 前置自增&#xff1a; 成员函数实现运算符的重载 返回的是 引用&a…...

计算机网络:1概述、2物理层

目录 概述因特网网络、互连网&#xff08;互联网&#xff09;与因特网的区别与关系因特网发展的三个阶段因特网服务提供者&#xff08;Internet Service Provider&#xff0c;ISP&#xff09;因特网的标准化工作因特网的管理结构 三种交换电路交换分组交换报文交换 计算机网络性…...

【Ardiuno】实验使用ESP32接收电脑发送的串口数据(图文)

使用ESP32可以非常方便的与电脑进行串口通讯&#xff0c;一般我们可以用串口接收ESP32的输出作为调试使用&#xff0c;今天我们再来实验一下从电脑端向ESP32单片机发送数据。 发送数据程序代码&#xff1a; void setup() {Serial.begin(9600); }void loop() { if(Serial.ava…...

思科ospf+rip重发布配置命令

——————————————————————————————————————————— 基础配置 R1 Router>en #进入配置模式 Router#conf #进入配置模式 Router(config)#h…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...