当前位置: 首页 > news >正文

国产化ETL产品必备的特性(非开源包装)

ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行抽取、清洗(净化)、转换、装载、标准、集成(汇总)...... 最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

       如果数据转换的频率或者要求不高可以手动实现ETL的功能;反之,如果对数据转换的要求比较高的话,就需要专门的ETL工具.



  1. 功能特性
    1. 开放性

支持各种类型业务系统数据源,包括不仅限于oracle、sqlserver、access等各类国内外关系型数据库,甚至pdf、word、excel、xml、txt等类型数据文件,支持多达30+数据源同时采集提取。国产信创数据库等即刻开放接口。 

1.2 扩展性 

集成Bee脚本开发环境(自研),图形设计可转换成后台bee脚本,可个性化定制开发,满足国内特殊信息现状。满足复杂业务逻辑数据处理需求。

提取的数据结构、数据内容、数据标准、数据处理流程都是可扩展和灵活配置的。

1.3简化性

简化了用户的操作。专用ETL通常通过图形化的配置方式,简单,灵活,使得用户无需过分关心数据库的各种内部细节,而专注于其功能实现。

1.4集成性

 集成数据标准转换和数据清洗功能。可对实际系统业务中复杂数据标准和代码转换,且配置简单、方便。数据抽取、清洗工作保证了数据质量。从而做到统一接口、统一数据文件格式、统一运行和维护方法。

1.5创新性 

独有的工作流调度、内置独有的脚本解释器功能组件(bee 脚本函数)处理清洗、过滤、转换。

1.6先进性 

核心自研可控,源自2004年 非开源包装技术。

1.7易安装维护 

系统本身是绿色免安装软件,拷贝就能用。基本不需要其他系统维护工作。

2非功能特点

 2.1 工具界面 

可以通过可视化操作方式进行设计,将大大降低开发门槛,使开发人员得到补充,避免人员流动性造成的运维困难。

 2.2 可用性 

改善数据运维的方式,运维人员经过基本培训后,简单操作即可满足ETL作业上线、部署等需求。

 2.3 安全性 

用户创建的作业文件采用加密方式存储,密钥采用与机器相关的硬件信息,当作业文件拷贝到其它机器时,由于对应密钥的硬件信息 发生改变,所以作业文件是无法读取的。这样可以杜绝非法用户将作业文件复制后、通过在其它机器创建同名用户从而窃取、破坏数 据信息的行为发生。

 为了防止程序开启后的非法访问(如用户在打开作业文件后离开机器,非法用户可借此窃取、破环数据信息),程序提供界面锁定功能。界面锁定后,必须提供锁定用户的密码才可重新进入程序。

2.4 易用性

 良好的易用性,逻辑清晰便于用户理解;系统操作简单,人机交互界面友好。系统操作界面一目了然,用户能够直观的找到自己使用的功能菜单,很方便的完成所需操作。

2.5设计约束 

所构建系统的所有设计约束。设计约束代表经过批准的、必须遵从的设计决定。示例包括软件语言、软件流程管理需求、规定使用的开发工具、体系结构和设计约束、购买的组件、类库等等。

3.部署要求

3.1.平台支持:

支持主流平台Linux, Windows以及国产操作系统,不同平台间具备可移植性(包含不同平台间移植以及从相同平台开发环境到生产环境间的移植);提供独立的运行框架,不依赖特定的数据库产品。同时支持各种硬件平台,如x86,龙芯等等。

3.2.满足信创要求

工具所依赖的操作系统、数据库、中间件符合信创改造要求。主要为:统信UOS操作系统、中科方德操作系统、中标麒麟、国产化数据库(人大金仓、达梦等)。

3.3.跨平台移植和向下兼容

工具跨平台或版本升级不影响原有作业设计及使用。或能提供作业升级脚本。

详见功能组件,如下图:


灵蜂ETL产品 BeeDI 之转换界面 配置
灵蜂ETL产品 BeeDI 之转换界面 配置

灵蜂ETL产品BeeDI之 数据联邦 配置

灵蜂ETL产品 BeeDI之 工作流 配置
灵蜂ETL产品 BeeDI之 工作流 配置
wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw== 编辑

相关文章:

国产化ETL产品必备的特性(非开源包装)

ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行抽取、清洗(净化)、转换、装载、标准、集成(汇总)...... 最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。…...

flink 操作mongodb的例子

Apache Flink 是一个流处理和批处理的开源框架,它通常用于处理大量数据流。然而,Flink 本身并不直接提供对 MongoDB 的原生支持,因为 MongoDB 是一个 NoSQL 数据库,而 Flink 主要与关系型数据库(如 JDBC 连接器&#x…...

【笔记】打卡01 | 初学入门

初学入门:01-02 01 基本介绍02 快速入门库处理数据集网络构建模型训练保存模型加载模型打卡-时间 01 基本介绍 MindSpore Data(数据处理层) ModelZoo(模型库) MindSpore Science(科学计算),包含…...

Rocky9使用cockpitweb登陆时root用户无法登陆

Rocky9使用cockpitweb登陆时root用户无法登陆 [rootlvs ~]# vim /etc/cockpit/disallowed-users [rootlvs ~]# systemctl restart cockpit 取消disallowed-users中的root,即可访问 ip:9090 登陆。...

微信小程序修改标题

要修改微信小程序页面的标题和调整字体大小,你需要对 app.json 和页面对应的 json 文件进行配置。 修改页面标题 打开 app.json 文件,找到 pages 字段,确认需要修改的页面路径。打开对应页面的 .json 文件(例如,pages/…...

Linux MySQL服务设置开机自启动

文章目录 前言简介一、准备工作二、操作步骤2.1 启动MySQL服务2.2 拷贝配置2.3 赋值权限2.4 添加为系统服务2.5 验证 总结 前言 请各大网友尊重本人原创知识分享,谨记本人博客:南国以南i、 提示:以下是本篇文章正文内容,下面案例…...

MacOS设备远程登录配置结合内网穿透实现异地ssh远程连接

文章目录 前言1. MacOS打开远程登录2. 局域网内测试ssh远程3. 公网ssh远程连接MacOS3.1 MacOS安装配置cpolar3.2 获取ssh隧道公网地址3.3 测试公网ssh远程连接MacOS 4. 配置公网固定TCP地址4.1 保留一个固定TCP端口地址4.2 配置固定TCP端口地址 5. 使用固定TCP端口地址ssh远程 …...

国有企业如何提高人效比?

随着市场竞争的日益激烈,国有企业面临着越来越大的经营压力。为了提高经济效益和核心竞争力,国有企业越来越重视提高人效比。人效比,即企业总收益与员工总人数的比值,反映了企业每名员工所创造的平均收益。提高人效比意味着在相同…...

Leetcode - 周赛401

目录 一,3178. 找出 K 秒后拿着球的孩子 二,3179. K 秒后第 N 个元素的值 三,3180. 执行操作可获得的最大总奖励 I 四,3181. 执行操作可获得的最大总奖励 II 一,3178. 找出 K 秒后拿着球的孩子 本题可以直接模拟&a…...

Java | Leetcode Java题解之第171题Excel表列序号

题目: 题解: class Solution {public int titleToNumber(String columnTitle) {int number 0;int multiple 1;for (int i columnTitle.length() - 1; i > 0; i--) {int k columnTitle.charAt(i) - A 1;number k * multiple;multiple * 26;}ret…...

【uni-app学习手札】

uni-app(vue3)编写微信小程序 编写uni-app不必拘泥于HBuilder-X编辑器,可用vscode进行编写,在《微信开发者工具》中进行热加载预览, 主要记录使用uni-app过程中自我备忘一些api跟语法,方便以后编写查找使用…...

ASP.NET Core 中使用 Dapper 的 Oracle 存储过程输出参数

介绍 Oracle 数据库功能强大,在企业环境中使用广泛。在 ASP.NET Core 应用程序中使用 Oracle 存储过程时,处理输出参数可能具有挑战性。本教程将指导您完成使用 Dapper(适用于 . NET 的轻量级 ORM(对象关系映射器)&am…...

C++的动态内存分配

使用new/delete操作符在堆中分配/释放内存 //使用new操作符在堆中分配内存int* p1 new int;*p1 2234;qDebug() << "数字是&#xff1a;" << *p1;//使用delete操作符在堆中释放内存delete p1;在分配内存的同时初始化 //在分配内存的时初始化int* p2 n…...

【论文阅读】-- TSR-TVD:时变数据分析和可视化的时间超分辨率

TSR-TVD: Temporal Super-Resolution for Time-Varying Data Analysis and Visualization 摘要1 引言2 相关工作3 我们的循环生成方法3.1 损失函数3.2 网络架构 4 结果与讨论4.1 数据集和网络训练4.2 结果4.3 讨论 5 结论和未来工作致谢参考文献附录1 训练算法及优化2 网络分析…...

《web应用技术》第12次课后作业

1、了解servlet技术 Servlet(server applet)&#xff1a;运行在服务器的小程序&#xff0c;Servlet就是一个接口&#xff0c;定义了Java类被浏览器访问到的规则。将来我们自定义一个类&#xff0c;实现Servlet接口&#xff0c;复写方法。 Servlet本身不能独立运行&#xff0c…...

【初阶数据结构】深入解析带头双向循环链表:探索底层逻辑

&#x1f525;引言 本篇将介绍带头双向循环链表底层实现以及在实现中需要注意的事项&#xff0c;帮助各位在使用过程中根据底层实现考虑到效率上问题和使用时可能会导致的错误使用 &#x1f308;个人主页&#xff1a;是店小二呀 &#x1f308;C语言笔记专栏&#xff1a;C语言笔…...

【面试干货】Java中的访问修饰符与访问级别

【面试干货】Java中的访问修饰符与访问级别 1、public2、protected3、默认&#xff08;没有访问修饰符&#xff09;4、private &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在Java中&#xff0c;访问修饰符用于控制类、变量、方法和构造器…...

Oracle最终还是杀死了MySQL

起因 大约15年前&#xff0c;Oracle收购了Sun公司&#xff0c;从而也拥有了MySQL&#xff0c;互联网上关于Oracle何时会“扼杀MySQL”的讨论此起彼伏。 当时流传着各种理论&#xff1a;从彻底扼杀 MySQL 以减少对 Oracle 专有数据库的竞争&#xff0c;到干掉 MySQL 开源项目&…...

【Python的随机数汇总】

​我们写python代码的时候&#xff0c;很少能用得上随机数&#xff0c;但是随机数有很多妙用。例如&#xff0c;在我们做测试数据集的时候&#xff0c;可以构建一个随机的dataframe&#xff1b; 或者在保存数据的时候&#xff0c;可以在每条数据前插入一列作为&#xff0c;不重…...

[状态压缩 广搜BFS]Saving Tang Monk

描述 《Journey to the West》(also 《Monkey》) is one of the Four Great Classical Novels of Chinese literature. It was written by Wu Chengen during the Ming Dynasty. In this novel, Monkey King Sun Wukong, pig Zhu Bajie and Sha Wujing, escorted Tang Monk to…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...