当前位置: 首页 > news >正文

ChatGPT、人工智能、人类和一些酒桌闲聊

© 2023 Conmajia
Initiated 10th March, 2023

昨天跟某化学家喝酒,期间提到了 ChatGPT。他的评价是:这鬼东西大量输出毫无意义、错漏百出甚至是虚假的信息,“in a confident accent”。例如某次 GPT 针对“描述某某记者”这一问题,给出了“某某是畅销图书作者”,事实上该记者从未写过或者出版过任何书籍。而 GPT 解释给出这个答案的原因竟是“因为很多记者都写过书,所以某某也写过。甚至因为其人受到关注,所以他的书作就应该是畅销书。”

听起来很离谱,不过对“人工智能”来说也很正常。所谓人工智能,现在市场上有一种弥漫着“磨刀霍霍向韭菜”的风气却把人们带到了只要一提 AI 潜意识里便只会觉得它是“智能”,而忽略了它终究是“人工”的,不可信的。毕竟人工智能的哲学基础便是“不确定性原理”。🐶

于是我们以此话题下酒,继续聊了下去。初用 GPT 时,我曾一度认为这个产品像是古早人工智能分支——“专家系统”——的现代版本,通过收集、存储数据并根据问题需求合成相应的回答,当然其中加入了现代深度学习的特性使其回答更符合人类的自然语言。但是随着使用次数增加,我从 GPT 那得到了明显错误的回答,让我意识到,这玩意儿是真的设计成了不在乎或者不能验证回答正确性的形式:但尽机事,各凭天命。

久仰于其“无所不会”的盛名,我曾要求 GPT 计算一个简单的矢量问题:求 v⃗=(−1,2,3)\vec{v}=(-1,2,3)v=(1,2,3)w⃗=(1,1,1)\vec{w}=(1,1,1)w=(1,1,1) 上的投影。我得到了如下回答:

▲ ChatGPT 关于矢量投影的一次回答

GPT 找到了正确的计算公式 projw⃗(v⃗)=v⃗⋅w⃗∣w⃗∣2w⃗\mathrm{proj}_{\vec{w}}(\vec{v})=\dfrac{\vec{v}\cdot\vec{w}}{\left|\vec{w}\right|^2}\vec{w}projw(v)=w2vww 却得到了明显错误的答案 (43×1,43×1,43×1)=(23,23,23)\left(\dfrac{4}{3}\times1,\dfrac{4}{3}\times 1,\dfrac{4}{3}\times 1\right)=\left(\dfrac{2}{3},\dfrac{2}{3},\dfrac{2}{3}\right)(34×1,34×1,34×1)=(32,32,32)。但是,正如化学家所遭遇的,它以“看起来非常确信”的语气,理直气壮地给出了错误答案。

酒桌上,我们的心理学家朋友呷了一大口酒,然后指出,GPT 其实只是一个语言模型。它的目标,或者说功能,仅限于尽量生成一些“语义上正确的回答”,至于这个回答是不是事实上正确的,并不是它关心的——人类终究还是一个自找麻烦的物种。当然我并不知道他的断言正确与否,毕竟我早就把 ChatGPT 标记为“仅供参考”了。

其实正确与否没人在乎,开发者只是领命行事,投资人要的显然是热度。不会真有人觉得他们是“为了人类”在努力改变世界吧?犹记得当初炒作“元宇宙”时,好似创世神降临,全体人类皆需顶礼膜拜。只要是资本推出的产品,不管是免费用户还是付出真金白银的消费者,仿佛只要你使用了产品享受了便利,你不给出品公司和资本家磕几个响头那就是愚民。结果却总是当某产品短期内成为话题焦点后,资本就到了“小试牛刀”的收获季节。比如近期 ChatGPT 从所谓“非盈利模式”正式亮明锋刃,推出 20 美金一月的 Plus 版服务,实实在在割了一茬尝鲜的韭菜。只是不知道又有多少人想要给资本家大老板下跪谢恩呢?我建议这些人每天吃完饭至少给饭馆大厨磕一个头,不过分吧?

这几日的“高温超导”新闻让媒体和股市沸腾雀跃,无论提出者有多少造假前科,也无论所谓的试验无法复现,一个个网友营销号似乎比真正的研究员、科学家们都要激动。这时候没有人再提“狼来了”,没人再提“科学需要严谨”,有的只是股价的飙升和资本的狂欢。每当人类有了“万一是真的呢”这种念头,也就意味着又一场赌局正式开始,无非就是谁是韭菜的击鼓传花游戏罢了。——评价来自两个在股市赔得底裤都快没了的倒霉蛋。😅

后记

当我再次尝试提问 (−1,2,3)⋅(1,1,1)(-1,2,3)\cdot(1,1,1)(1,2,3)(1,1,1),得到了正确的答案 (4/3,4/3,4/3)\left(4/3,4/3,4/3\right)(4/3,4/3,4/3)

▲ ChatGPT 关于矢量投影的另一次回答

对于只是“玩一玩”人工智能产品的体验型用户来说,这似乎属于尚可接受的有趣经验。不过对于“依赖型”用户而言,可以说是噩梦一般的感受:承担了所有的风险(懂的都懂),却得到错误的答案——想想都很 drama。

相关文章:

ChatGPT、人工智能、人类和一些酒桌闲聊

© 2023 Conmajia Initiated 10th March, 2023 昨天跟某化学家喝酒,期间提到了 ChatGPT。他的评价是:这鬼东西大量输出毫无意义、错漏百出甚至是虚假的信息,“in a confident accent”。例如某次 GPT 针对“描述某某记者”这一问题&#…...

WebRTC开源库内部调用abort函数引发程序发生闪退问题的排查

目录 1、初始问题描述 2、使用Process Explorer工具查看到处理音视频业务的rtcmpdll.dll模块没有加载起来 3、使用Dependency Walker工具查看到rtcmpdll.dll依赖的库有问题 4、更新库之后Debug程序启动时就发生异常,程序闪退 5、VS调试时看不到有效的函数调用堆…...

Golang并发编程

Golang并发编程 文章目录Golang并发编程1. 协程2. channel2.1 channel的创建2.2 使用waitGroup实现同步3. 并发编程3.1 并发编程之runtime包3.2 mutex互斥锁3.3 channel遍历3.3.1 for if遍历3.3.2 for range3.4 select switch3.5 Timer3.5.1 time.NewTimer()3.5.2 Stop、reset…...

windows+Anaconda环境下安装BERT成功安装方法及问题汇总

前言 在WindowsAnaconda环境下安装BERT,遇到各种问题,几经磨难,最终成功。接下来,先介绍成功的安装方法,再附上遇到的问题汇总 成功的安装方法 1、创建虚拟环境 注意:必须加上python3.7.12以创建环境&a…...

git - 简易指南

git - 简易指南 创建新仓库 创建新文件夹,打开,然后执行 git init 以创建新的 git 仓库。 检出仓库 执行如下命令以创建一个本地仓库的克隆版本: git clone /path/to/repository 如果是远端服务器上的仓库,你的命令会是这个样…...

[论文笔记]Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

引言 我们知道Transformer很好用,但它设定的最长长度是512。像一篇文章超过512个token是很容易的,那么我们在处理这种长文本的情况下也想利用Transformer的强大表达能力需要怎么做呢? 本文就带来一种处理长文本的Transformer变种——Transf…...

华为OD机试题 - 找目标字符串(JavaScript)| 机考必刷

更多题库,搜索引擎搜 梦想橡皮擦华为OD 👑👑👑 更多华为OD题库,搜 梦想橡皮擦 华为OD 👑👑👑 更多华为机考题库,搜 梦想橡皮擦华为OD 👑👑👑 华为OD机试题 最近更新的博客使用说明本篇题解:找目标字符串题目输入输出示例一输入输出说明Code解题思路版权说…...

C++面向对象编程之六:重载操作符(<<,>>,+,+=,==,!=,=)

重载操作符C允许我们重新定义操作符(例如:,-,*,/)等,使其对于我们自定义的类类型对象,也能像内置数据类型(例如:int,float,double&…...

JS_wangEditor富文本编辑器

官网&#xff1a;https://www.wangeditor.com/ 引入 CSS 定义样式 <link href"https://unpkg.com/wangeditor/editorlatest/dist/css/style.css" rel"stylesheet"> <style>#editor—wrapper {border: 1px solid #ccc;z-index: 100; /* 按需定…...

Django实践-06导出excel/pdf/echarts

文章目录Django实践-06导出excel/pdf/echartsDjango实践-06导出excel/pdf/echarts导出excel安装依赖库修改views.py添加excel导出函数修改urls.py添加excel/运行测试导出pdf安装依赖库修改views.py添加pdf导出函数修改urls.py添加pdf/生成前端统计图表修改views.py添加get_teac…...

java并发入门(一)共享模型—Synchronized、Wait/Notify、pack/unpack

一、共享模型—管程 1、共享存在的问题 1.1 共享变量案例 package com.yyds.juc.monitor;import lombok.extern.slf4j.Slf4j;Slf4j(topic "c.MTest1") public class MTest1 {static int counter 0;public static void main(String[] args) throws InterruptedEx…...

Ast2500增加用户自定义功能

备注&#xff1a;这里使用的AMI的开发环境MegaRAC进行AST2500软件开发&#xff0c;并非openlinux版本。1、添加上电后自动执行的任务在PDKAccess.c中列出了系统启动过程中的所有任务&#xff0c;若需要添加功能&#xff0c;在相应的任务中添加自定义线程。一般在两个任务里面添…...

用Python暴力求解德·梅齐里亚克的砝码问题

文章目录固定个数的砝码可称量重量砝码的组合方法40镑砝码的组合问 一个商人有一个40磅的砝码&#xff0c;由于跌落在地而碎成4块。后来&#xff0c;称得每块碎片的重量都是整磅数&#xff0c;而且可以用这4 块来称从1 至40 磅之间的任意整数磅的重物。问这4 块砝码片各重多少&…...

离散Hopfield神经网络的分类——高校科研能力评价

离散Hopfield网络离散Hopfield网络是一种经典的神经网络模型&#xff0c;它的基本原理是利用离散化的神经元和离散化的权值矩阵来实现模式识别和模式恢复的功能。它最初由美国物理学家John Hopfield在1982年提出&#xff0c;是一种单层的全连接神经网络&#xff0c;被广泛应用于…...

Retrofit核心源码分析(三)- Call逻辑分析和扩展机制

在前面的两篇文章中&#xff0c;我们已经对 Retrofit 的注解解析、动态代理、网络请求和响应处理机制有了一定的了解。在这篇文章中&#xff0c;我们将深入分析 Retrofit 的 Call 逻辑&#xff0c;并介绍 Retrofit 的扩展机制。 一、Call 逻辑分析 Call 是 Retrofit 中最基本…...

源码分析spring如和对@Component注解进行BeanDefinition注册的

Spring ioc主要职责为依赖进行处理&#xff08;依赖注入、依赖查找&#xff09;、容器以及托管的(java bean、资源配置、事件)资源声明周期管理&#xff1b;在ioc容器启动对元信息进行读取&#xff08;比如xml bean注解等&#xff09;、事件管理、国际化等处理&#xff1b;首先…...

C语言--字符串函数1

目录前言strlenstrlen的模拟实现strcpystrcatstrcat的模拟实现strcmpstrcmp的模拟实现strncpystrncatstrncmpstrstrstrchr和strrchrstrstr的模拟实现前言 本章我们将重点介绍处理字符和字符串的库函数的使用和注意事项。 strlen 我们先来看一个我们最熟悉的求字符串长度的库…...

Webstorm使用、nginx启动、FinalShell使用

文章目录 主题设置FinalShellFinalShell nginx 启动历史命令Nginx页面发布配置Webstorm的一些常用快捷键代码生成字体大小修改Webstorm - gitCode 代码拉取webstorm 汉化webstorm导致CPU占用率高方法一 【忽略node_modules】方法二 【设置 - 代码编辑 - 快速预览文档 - 关闭】主…...

源码分析Spring @Configuration注解如何巧夺天空,偷梁换柱。

前言 回想起五年前的一次面试&#xff0c;面试官问Configuration注解和Component注解有什么区别&#xff1f;记得当时的回答是&#xff1a; 相同点&#xff1a;Configuration注解继承于Component注解&#xff0c;都可以用来通过ClassPathBeanDefinitionScanner装载Spring bean…...

vector的使用及模拟实现

目录 一.vector的介绍及使用 1.vector的介绍 2.vector的使用 1.vector的定义 2.vector iterator的使用 3. vector 空间增长问题 4.vector 增删查改 3.vector 迭代器失效问题&#xff08;重点&#xff09; 1. 会引起其底层空间改变的操作 2.指定位置元素的删除操作--erase 3. Li…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...