当前位置: 首页 > news >正文

《昇思 25 天学习打卡营第 3 天 | 张量 Tensor 》

《昇思 25 天学习打卡营第 3 天 | 张量 Tensor 》

活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp
签名:Sam9029


感觉像是在 学习高数一样

张量 Tensor

  • 张量是一种特殊的数据结构,与数组和矩阵非常相似。

    • 张量(Tensor)是 MindSpore 网络运算中的基本数据结构
    • 应该类似于 字符串 或 整型 在 C 语言中一样吧,基本数据结构

引入张量(直接从 mindscope 模块中引入)

import mindspore
from mindspore import Tensor, CSRTensor, COOTensor

创建张量

张量的创建方式有多种,构造张量时,支持传入 Tensor、float、int、bool、tuple、list 和 numpy.ndarray 类型。

  • 根据数据直接生成
data = [1, 0, 1, 0]
x_data = Tensor(data)
print(x_data, x_data.shape, x_data.dtype)## [1 0 1 0] (4,) Int64
  • 从 NumPy 数组生成
  • 使用 init 初始化器构造张量
  • 继承另一个张量的属性,形成新的张量

张量的属性

- 不用多说,属于张量的基本术语,记住
x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32)# 形状(shape):Tensor的shape,是一个tuple。
print("x_shape:", x.shape)# 数据类型(dtype):Tensor的dtype,是MindSpore的一个数据类型。
print("x_dtype:", x.dtype)# 单个元素大小(itemsize): Tensor中每一个元素占用字节数,是一个整数。
print("x_itemsize:", x.itemsize)# 占用字节数量(nbytes): Tensor占用的总字节数,是一个整数。
print("x_nbytes:", x.nbytes)# 维数(ndim): Tensor的秩,也就是len(tensor.shape),是一个整数。
print("x_ndim:", x.ndim)# 元素个数(size): Tensor中所有元素的个数,是一个整数。
print("x_size:", x.size)# 每一维步长(strides): Tensor每一维所需要的字节数,是一个tuple。
print("x_strides:", x.strides)# x_shape: (2, 2)
# x_dtype: Int32
# x_itemsize: 4
# x_nbytes: 16
# x_ndim: 2
# x_size: 4
# x_strides: (8, 4)

张量索引

- 略过

张量运算

- 运算很好理解,类比四则
- 张量运算 包括`算术`、线性代数、矩阵处理(转置、标引、切片)、采样等,张量运算
- 可以看到,张量包括了算术运行,但是作为 mindscope 的基本数据结构,也有更高级的运算概念,如:线性代数、矩阵处理

以下是一下 算术运算的例子


x = Tensor(np.array([1, 2, 3]), mindspore.float32)
y = Tensor(np.array([4, 5, 6]), mindspore.float32)
​
output_add = x + y
output_sub = x - y
output_mul = x * y
output_div = y / x
output_mod = y % x # 取模(%)
output_floordiv = y // x # 整除(//)print("add:", output_add)
print("sub:", output_sub)
print("mul:", output_mul)
print("div:", output_div)
print("mod:", output_mod)
print("floordiv:", output_floordiv)add: [5. 7. 9.]
sub: [-3. -3. -3.]
mul: [ 4. 10. 18.]
div: [4.  2.5 2. ]
mod: [0. 1. 0.]
floordiv: [4. 2. 2.]

Tensor 与 NumPy 转换

- Tensor转换为NumPy 使用 Tensor.asnumpy()~~~pyt = Tensor([1., 1., 1., 1., 1.])print(f"t: {t}", type(t))n = t.asnumpy()print(f"n: {n}", type(n))# t: [1. 1. 1. 1. 1.] <class 'mindspore.common.tensor.Tensor'># n: [1. 1. 1. 1. 1.] <class 'numpy.ndarray'>
~~~- NumPy 转换为 Tensor 使用 Tensor.from_numpy(n)~~~pyn = np.ones(5)t = Tensor.from_numpy(n)np.add(n, 1, out=n)print(f"n: {n}", type(n))print(f"t: {t}", type(t))# n: [2. 2. 2. 2. 2.] <class 'numpy.ndarray'># t: [2. 2. 2. 2. 2.] <class 'mindspore.common.tensor.Tensor'>
~~~

稀疏张量

  • MindSpore 现在已经支持最常用的 CSR 和 COO 两种稀疏数据格式。
  • CSRTensor
  • COOTensor

稀疏张量有点难以理解,暂时略过


目前初步了解一下张量Tensor吧,深入感觉必须要沉下心来学,现在时间不够,主要是建立 AI 训练深度学习模型的认知先

但是没关系,千里之行,始于足下!

我会继续一步一步的保持学习,在 昇思社区 进行 AI 技术方面的探索和学习

希望能给同样对 AI 充满热情的你一些启发。记住,技术的世界无限广阔,让我们一起勇敢地迈出探索的脚步吧!🚀🤖

相关文章:

《昇思 25 天学习打卡营第 3 天 | 张量 Tensor 》

《昇思 25 天学习打卡营第 3 天 | 张量 Tensor 》 活动地址&#xff1a;https://xihe.mindspore.cn/events/mindspore-training-camp 签名&#xff1a;Sam9029 感觉像是在 学习高数一样 张量 Tensor 张量是一种特殊的数据结构&#xff0c;与数组和矩阵非常相似。 张量&#xf…...

free命令——显示系统内存使用情况

free命令的功能是显示系统内存使用情况&#xff0c;包含物理内存和交换内存的总量、使用量和空闲量。 语法格式&#xff1a;free [选项] 常用选项及含义 选项含义-b以字节B为单位显示内存和交换内存的容量使用情况-k以KB为单位显示内存和交换内存的容量使用情况-m以MB为单位…...

麒麟移动运行环境(KMRE)——国内首个开源的商用移固融合“Android生态兼容环境”正式开源

近日&#xff0c;由麒麟软件研发的KMRE&#xff08;Kylin Mobile Runtime Environment&#xff0c;麒麟移动运行环境&#xff09;在openKylin&#xff08;开放麒麟&#xff09;社区正式发布&#xff0c;为Linux桌面操作系统产品提供了高效的Android运行环境解决方案。这也是国内…...

print(“{}{}“.format())

print("{}{}".format()) 是 Python 中用于格式化字符串并将其输出到控制台的一种方法。format 方法允许你在字符串中插入变量或表达式的值&#xff0c;并以指定的格式显示它们。 基本语法 print("format_string".format(value1, value2, ...))format_str…...

2-12 基于CV模型卡尔曼滤波、CT模型卡尔曼滤波、IMM模型滤波的目标跟踪

基于CV模型卡尔曼滤波、CT模型卡尔曼滤波、IMM模型滤波的目标跟踪。输出跟踪轨迹及其误差。程序已调通&#xff0c;可直接运行。 2-12 CV模型卡尔曼滤波 CT模型卡尔曼滤波 - 小红书 (xiaohongshu.com)...

序列1bp插入有什么影响

1bp插入突变&#xff08;1个碱基插入&#xff09;在基因序列中通常会引起以下几种影响&#xff1a; 移码突变&#xff08;Frameshift Mutation&#xff09;&#xff1a; 插入的一个碱基会改变插入点之后所有的密码子&#xff0c;导致读取框的移动。这种变化通常会引起整个蛋白质…...

CVPR 2024盛况空前,上海科技大学夺得最佳学生论文奖,惊艳全场

CVPR 2024盛况空前&#xff01;上海科技大学夺得最佳学生论文奖&#xff0c;惊艳全场&#xff01; 会议之眼 快讯 2024 年 CVPR &#xff08;Computer Vision and Pattern Recogntion Conference) 即国际计算机视觉与模式识别会议&#xff0c;于6月17日至21日正在美国西雅图召…...

HTTP 状态码详解及使用场景

目录 1xx 信息性状态码2xx 成功状态码3xx 重定向状态码4xx 客户端错误状态码5xx 服务器错误状态码 HTTP思维导图连接&#xff1a;https://note.youdao.com/s/A7QHimm0 1xx 信息性状态码 100 Continue&#xff1a;表示客户端应继续发送请求的其余部分。 使用场景&#xff1a;客…...

【Windows】配置Flutter开发环境

一、下载 flutter sdk 点此跳至下载官网 下载好flutter sdk&#xff0c;并解压到自定义的位置。 二、配置环境变量 此电脑 --> 右键 选择 属性 --> 点击 高级系统设置 --> 会弹出系统属性的窗口&#xff0c;点击 环境变量 按钮 1.配置加速镜像地址 PUB_HOSTED_…...

云渲染与传统渲染器的较量与融合

随着云计算技术的突破性进展&#xff0c;云渲染技术应运而生&#xff0c;为传统渲染器带来了前所未有的挑战与机遇。云渲染&#xff0c;以其在计算资源、可扩展性、协作便利性等方面的显著优势&#xff0c;正在重新定义渲染行业的标准。云渲染与传统渲染器之间的核心差异&#…...

比较新旧两数组列表,新增或删除数据库记录(ai生成)

两数组比较 元素相同则不处理,缺少则删除数据库记录,多余则新增数据库记录。 为了解决这个问题&#xff0c;我们需要定义两个数组array1和array2&#xff0c;它们包含数据库中的记录。然后&#xff0c;我们可以遍历这两个数组&#xff0c;并对数据库执行相应的操作。以下是一个…...

Java基础 - 练习(五)根据今天日期获取一周内的日期(基姆拉尔森公式)

基姆拉尔森计算公式用于计算一周内的日期。比如给你年月日&#xff0c;从而计算今天是星期几。 基姆拉尔森公式 Week (d2*m3*(m1)/5yy/4-y/100y/4001) mod 7&#xff0c; 3<m<14Week的取值范围是0 ~ 6&#xff0c;其中0代表星期日&#xff0c;1 ~ 6分别代表星期一到星期…...

HTML5 新元素

HTML5 新元素 HTML5是最新版本的HTML&#xff0c;引入了许多新元素和功能&#xff0c;以更好地满足现代网页设计的需要。这些新元素不仅增强了网页的表现力&#xff0c;还提高了代码的可读性和可维护性。本文将详细介绍HTML5中的新元素&#xff0c;包括它们的功能和用法。 1.…...

虹软ArcSoft—真正离线免费的人脸识别SDK

虹软ArcSoft—真正离线免费的人脸识别SDK 高级功能收费 还是很好滴 人证核验功能是C/C的SDK&#xff0c;需要封装为C#&#xff0c;然后暴露为Restful API使用...

[环境配置]vscode通过ssh连接autodl进行项目开发

警告&#xff1a;如果使用VSCode直接执行或开终端执行训练程序&#xff0c;请在调试完成后最后通过screen/tmux工具开守护进程&#xff0c;确保程序不受SSH连接中断影响程序执行&#xff01; 官方文档&#xff1a;请戳 AutoDL使用方法&#xff1a; 在进行操作前您需要提前安装…...

2024中国宁波-东南亚职业教育产教协同发展校企对接会举办

2024年6月16日&#xff0c;由东南亚教育部长组织技术教育发展中心&#xff08;SEAMEO TED&#xff09;、联合国教科文组织国际农村教育研究与培训中心&#xff08;UNESCO INRULED&#xff09;、中国教育国际交流协会&#xff08;CEAIE&#xff09;三方主办的“2024中国宁波-东南…...

Web前端、后端与建站:全方位解析四大基石、五大挑战、六大技术与七大策略

Web前端、后端与建站&#xff1a;全方位解析四大基石、五大挑战、六大技术与七大策略 在当今数字化时代&#xff0c;Web前端、后端以及建站技术已经成为构建现代网站和应用不可或缺的关键要素。本文将从四个方面探讨Web前端与后端的基础&#xff0c;从五个方面分析建站过程中的…...

nginx出现504 Gateway Time-out错误的原因分析及解决

nginx出现504 Gateway Time-out错误的原因分析及解决 1、查看公网带宽是否被打满 2、查看网络是否有波动(可以在nginx上ping后端服务&#xff0c;看是否有丢包情况) 3、查看服务器资源使用情况(cpu、内存、磁盘、网络等) 4、查看nginx日志&#xff0c;具体到哪个服务的哪个…...

基于STM32的智能插座项目

本项目基于stm32f103c8t6芯片通过集成众多模块和元器件&#xff0c;通过ESP01-S和阿里云平台实现智能插座的项目开展。资料获取到咸&#x1f41f;&#xff1a;xy591215295250 \\\或者联系wechat 号&#xff1a;comprehensivable 随着电子科学与技术的快速发展&#xff0c;软硬件…...

VR虚拟现实(Virtual Reality)

虚拟现实&#xff08;Virtual Reality&#xff09;是一种通过计算机技术和设备模拟现实世界的环境和体验的技术。它创造了一个虚拟的三维环境&#xff0c;用户可以通过穿戴设备和感应器与该环境进行互动和沉浸。 虚拟现实技术包括以下几个关键组成部分&#xff1a; 头戴设备&a…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...