当前位置: 首页 > news >正文

不得不看的AI前沿理论与技术: LLM-Assisted Light大模型

文章主要介绍最新论文《LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments》,该论文提出了一种名为LLM-Assisted Light(LA-Light)的创新方法,利用大型语言模型的能力来改进复杂城市环境中的交通信号控制。传统的交通信号控制系统主要依赖规则算法或强化学习,在应对不熟悉场景时表现有限。为了解决这些问题,论文提出了一个混合框架,将大型语言模型与一套感知和决策工具相结合,使其能够处理静态和动态交通信息,并在决策过程中起核心作用。实验结果表明,LA-Light系统在各种交通环境下无需额外训练即可有效适应,尤其是在传感器故障的情况下,表现优于传统RL系统,显著减少了平均等待时间。该研究展示了大型语言模型在交通管理中的潜力,开辟了将大型语言模型应用于实际动态场景的道路。文章的作者为邱雪,审校为黄星宇和许东舟。

1. 背景与挑战

这篇论文介绍了当前城市交通信号控制系统面临的挑战,包括传统基于规则和强化学习的方法在应对复杂和动态的交通环境时表现不佳,难以适应不熟悉的场景,以及传感器技术的发展虽然带来了更具适应性的策略,但仍存在过拟合和难以捕捉关键事件的局限性。尤其在传感器故障的情况下,传统系统难以有效管理交通流,实时数据利用的局限也限制了动态调整交通信号的能力。

为解决这些问题,论文提出了LA-Light框架,通过整合大型语言模型和一套感知与决策工具,提高交通信号控制系统的适应性和智能化水平。实验结果表明,LA-Light在各种交通环境下无需额外训练即可有效适应,尤其在传感器故障情况下表现优于传统强化学习系统,显著减少了平均等待时间,展示了大型语言模型在交通管理中的巨大潜力。

2. 方法

图1 LA-Light的混合框架图

论文提出的方法论是通过整合大型语言模型与交通信号控制系统,构建一个名为LLM-Assisted Light(LA-Light)的混合框架,如图1所示,以提高交通信号控制的适应性和智能化水平。具体方法包括以下几个方面:

首先,LA-Light框架的结构将LLM置于决策过程的核心,通过高级推理和决策能力来处理交通信号控制任务。同时,框架中集成了一套感知工具和决策工具,感知工具用于收集静态和动态交通信息,决策工具用于辅助LLM做出交通信号控制决策。工作流程从任务描述开始,定义LLM在交通管理中的角色。接着,LLM从预定义的工具集中选择合适的感知和决策工具,收集交通环境中的数据并进行分析,最终做出交通信号控制的决策,并解释其决策逻辑以提高系统的透明度。决策传输给交通控制系统后,实施相应的信号调整,并提供解释反馈。

为了验证该框架的有效性,论文开发了一个仿真平台,并通过实验表明,LA-Light系统能够在不同的交通环境下有效适应,特别是在传感器故障的情况下,表现优于传统RL系统,显著减少了平均等待时间。论文通过将LLM的高级推理和决策能力与传统交通信号控制方法相结合,提出了一种创新的混合框架,显著提升了交通信号控制系统的灵活性和智能化水平。

3. 数据集

图2 上海市松江区陈塔路的交通网络。(a) Google地图上的显示。(b) 在SUMO模拟器中的显示。

论文使用的数据集包括合成数据集和实际数据集,以评估提出的LA-Light框架在交通信号控制中的表现。合成数据集包含具有不同布局的独立交叉路口场景,包括三路交叉口(每个方向有三条车道)和四路交叉口(每个方向有三条车道)。实际数据集则主要来自上海市松江区的城市道路网络,该区域因高密度建设和商业活动而交通拥堵严重。该网络涵盖18个交叉路口,包括12个四路交叉口和6个三路交叉口。数据通过分析2021年7月30日的监控视频记录每分钟的车辆数,以在SUMO仿真平台上重现这些交通场景,部分数据如图2所示。

为了全面评估LA-Light的性能,设计了三个特定的测试场景,如图3所示。首先是紧急车辆场景,在正常交通流中引入占总交通量1%的紧急车辆(如救护车),这些车辆有随机的起点和终点。其次是道路封闭事件场景,模拟交通事故等突发事件,通过随机道路封闭来测试系统的响应能力。最后是传感器故障场景,模拟传感器可靠性问题,在仿真过程中引入10%的传感器故障概率,以测试系统在数据丢失情况下的性能。通过这些数据集和场景,验证了LA-Light框架在不同交通环境和突发情况下的适应性和有效性。

图3 三个测试场景。(a) 紧急车辆场景,救护车被整合进交通流中;(b) 道路封闭事件场景,展示因事故或其他事件导致的临时道路封闭;(c) 传感器故障场景,展示传感器故障对交通数据准确性的影响。

4. 实验结果

图4 在紧急车辆场景中,LA-Light在不同数据集上与其它模型的对比实验结果

论文的实验结果表明,LA-Light框架在各种交通环境下表现出色,特别是在紧急车辆、道路封闭事件和传感器故障等特殊场景中显著优于传统的交通信号控制方法和强化学习方法。在紧急车辆场景中,与Maxpressure方法相比,LA-Light在四路交叉口中减少了32.1%的平均行程时间(ATT),在上海网络中减少了10.8%,具体如图4所示。此外,LA-Light显著提高了紧急车辆的效率,平均紧急行程时间(AETT)在上海网络中减少了15.3%。

图5 在道路封闭事件场景中,LA-Light在不同数据集上与其它模型的对比实验结果

在道路封闭事件场景中,LA-Light在三路交叉口中比IntelliLight方法减少了2.2%的平均行程时间和6.3%的平均等待时间(AWT),如图5所示。在上海网络中,LA-Light在平均行程时间和平均等待时间上分别比UniTSA方法提高了6.8%和11.3%。

图6 在传感器故障场景中,LA-Light在不同数据集上与其它模型的对比实验结果

在传感器故障场景中,与Maxpressure方法相比,LA-Light在上海网络中的平均行程时间和平均等待时间分别减少了20.0%和35.9%,如图6所示。与UniTSA方法相比,平均行程时间和平均等待时间分别提高了7.7%和20.4%。

总体而言,LA-Light框架通过利用LLM强大的推理和决策能力,结合传统交通信号控制方法和实时数据收集工具,实现了显著的性能提升。实验结果展示了LA-Light在处理紧急事件、应对突发交通状况以及传感器数据缺失情况下的强大适应能力和稳定性。

5. 总结与展望

论文提出的LA-Light框架,将大型语言模型集成到交通信号控制系统中,以提升其在复杂城市交通环境中的适应能力和智能化水平。通过将大型语言模型作为决策核心,结合感知工具和决策工具,LA-Light框架能够动态收集和分析交通数据,制定有效的交通信号控制决策。实验结果表明,LA-Light在处理紧急车辆、道路封闭事件和传感器故障等特殊场景中表现优异,相较于传统方法和其他强化学习方法,显著减少了平均行程时间和平均等待时间,提升了交通管理的效率和应变能力。

未来的工作将致力于改进大型语言模型与交通控制系统的交互过程,以加快响应速度,并引入基于视觉的模型来直接处理视觉信息。这些改进预计将提升框架在处理实际复杂交通系统方面的能力,减少对文本描述的依赖。此外,还计划在更大规模和更复杂的实际交通网络中验证LA-Light的有效性,以进一步优化其应用潜力,推动大型语言模型在实际交通管理中的应用。

相关文章:

不得不看的AI前沿理论与技术: LLM-Assisted Light大模型

文章主要介绍最新论文《LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments》,该论文提出了一种名为LLM-Assisted Light(LA-Light)的创新方法&…...

流行跨链桥总结

本贴主要总结出现的新跨链桥,简介,及其项目主页,持续更新 1.Cbridge cBridge引入了一流的跨链Token桥接体验,为用户提供了深度流动性,为不想运营cBridge节点的cBridge节点运营商和流动性提供商提供了高效且易于使用的…...

代理网络基础设施 101:增强安全性、速度和可扩展性

编辑代理网络在现代网络架构中发挥着重要作用,充当管理和重新路由数据流的中介。它们处理的数据可以是各种类型,包括搜索查询和潜在的敏感客户信息,这凸显了它们在数据安全方面的作用。 然而,代理的好处不仅限于安全性。它们为用…...

小游戏app看广告app开发案例

游戏APP与看广告APP的开发案例众多,这些案例通常展示了如何通过创新的方式将游戏与广告相结合,实现用户体验与商业利益的双重提升。以下是一些具体的案例: 创意小程序广告案例: 某快餐品牌通过推出一款基于其主打产品(…...

VOC数据集

VOC(Visual Object Classes)格式的数据集是一种用于计算机视觉任务的标准数据集格式,它最初是由Pascal VOC(PASCAL Visual Object Classes)数据集引入的。VOC数据集格式定义了一套标准化的数据集结构,包括X…...

[Linux内核驱动]内存动态申请

内核空间内存动态申请 更多详细内容可以查看我的github kmalloc() 函数原型: void *kmalloc(size_t size, gfp_t flags);参数说明: size:要分配的内存块的大小,以字节为单位。flags:分配标志,用于指定内…...

在Worpress增加网站的二级目录,并转向到站外网站

在WordPress中,你可以通过添加自定义重定向来实现将某个二级目录(例如 www.example.com/subdir)重定向到站外网站。可以通过以下几种方法来实现: 方法一:使用 .htaccess 文件 如果你的服务器使用Apache,你…...

torch.max函数

torch.max函数的用法 第一种第二种 官方介绍:Link 有两种使用场景,输入的参数不同以及返回值不同: 第一种 没有参数dim,但这种只适合一维张量。 torch.max(input) → Tensor Returns the maximum value of all elements in the…...

“打造智能售货机系统,基于ruoyi微服务版本开源项目“

目录 # 开篇 售货机术语 1. 表设计说明 2. 页面展示 2.1 区域管理页面 2.2 合作商管理页面 2.3 点位管理页面 3. 建表资源 3.1 创建表的 SQL 语句(包含字段备注) 1. Region 表 2. Node 表 3. Partner 表 4. 创建 tb_vending_machine 表的 S…...

LeetCode347:前K个高频元素

题目描述 给你一个整数数组 nums 和一个整数 k &#xff0c;请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。 解题思想 使用优先队列 priority_queue<Type, Container, Functional> Type 就是数据类型&#xff0c;Container 就是容器类型&#xff08;C…...

2.线上论坛项目

一、项目介绍 线上论坛 相关技术&#xff1a;SpringBootSpringMvcMybatisMysqlSwagger项目简介&#xff1a;本项目是一个功能丰富的线上论坛&#xff0c;用户可编辑、发布、删除帖子&#xff0c;并评论、点赞。帖子按版块分类&#xff0c;方便查找。同时&#xff0c;用户可以…...

Java面试题:讨论synchronized关键字和java.util.concurrent包中的同步工具,如Lock和Semaphore

在 Java 中&#xff0c;synchronized 关键字和 java.util.concurrent 包中的同步工具都是用来控制多线程环境下的并发访问&#xff0c;以防止数据竞争和确保线程安全。下面是对 synchronized 关键字和 java.util.concurrent 包中的一些同步工具的讨论&#xff0c;包括它们的特点…...

酱香型白酒派系介绍

酱香型白酒作为中国传统白酒的重要流派&#xff0c;以其独特的酱香和复杂的酿造工艺而著称。在酱香型白酒中&#xff0c;形成了多个派系&#xff0c;各具特色。 以下是关于北派、茅派、川派和黔派等各个派系的详细介绍。 一、北派 地理位置&#xff1a;主要产于秦岭和淮河以…...

编译chamfer3D报错

python setup.py install编译chamfer3D报错 出现nvcc fatal : Unsupported gpu architecture ‘compute_86‘的问题&#xff0c;是因为显卡与cuda版本支持的算力不匹配。 nvcc fatal : Unsupported gpu architecture ‘compute_86’ ninja: build stopped: subcommand failed. …...

BuildConfig类找不到,BuildConfig.java类不在编译加载路径问题解决

今天用buildConfigField设置编译时常量遇到了问题&#xff0c;访问不到BuildConfig类&#xff0c;import导包也找不到类&#xff0c;具体设置如下&#xff1a; defaultConfig {applicationId com.sample.abcminSdk 28targetSdk 33versionCode getVerInt()//1versionName getVer…...

海外版coze前端代码助手

定位 解决前端同事的开发问题 参数配置 测试 支持 最屌的大模型及语音播报。 体验地址 海外版前端代码助手 需要魔法才能体验油...

python pyautogui实现图片识别点击失败后重试

安装库 pip install Pillow pip install opencv-python confidence作用 confidence 参数是用于指定图像匹配的信度&#xff08;或置信度&#xff09;的&#xff0c;它表示图像匹配的准确程度。这个参数的值在 0 到 1 之间&#xff0c;数值越高表示匹配的要求越严格。 具体来…...

怎么看电脑实时充电功率

因为我想测试不同的充电器给电脑充电的速度&#xff0c;所以就想找一款软件可以看电脑当前充电功率的软件&#xff0c;我给一个图 直接搜索就可以下载了&#xff0c;charge rate就是功率&#xff0c;这里是毫瓦&#xff0c;换算单位是 1000mw1w 所以我这里充电功率是65w&…...

Qt 实战(4)信号与槽 | 4.2、自定义信号与槽

文章目录 一、自定义信号与槽1、自定义信号2、自定义槽3、连接信号与槽4、总结 前言&#xff1a; 在Qt框架中&#xff0c;信号&#xff08;signals&#xff09;和槽&#xff08;slots&#xff09;机制是对象间通信的核心。这种机制允许对象在特定事件发生时发出信号&#xff0c…...

Android开发系列(六)Jetpack Compose之Box

Box是一个用来组合和控制子元素布局的组件。它可以在一个矩形区域内排列一个或多个子元素&#xff0c;并根据所提供的参数来控制它们的位置、大小和样式。 Box的功能类似传统的FrameLayout。 下面通过示例了解Box的使用方法&#xff0c;首先看一个最简单的示例&#xff0c;如下…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋&#xff0c;无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话&#xff0c;配置.bahs_profile后也能解决上下翻页这些&#xff0c;但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...

初探用uniapp写微信小程序遇到的问题及解决(vue3+ts)

零、关于开发思路 (一)拿到工作任务,先理清楚需求 1.逻辑部分 不放过原型里说的每一句话,有疑惑的部分该问产品/测试/之前的开发就问 2.页面部分(含国际化) 整体看过需要开发页面的原型后,分类一下哪些组件/样式可以复用,直接提取出来使用 (时间充分的前提下,不…...