当前位置: 首页 > news >正文

深入浅出 langchain 1. Prompt 与 Model

示例

从代码入手来看原理

from langchain_core.output_parsers import StrOutputParser  
from langchain_core.prompts import ChatPromptTemplate  
from langchain_openai import ChatOpenAI  prompt = ChatPromptTemplate.from_template("tell me a short joke about {topic}")  
model = ChatOpenAI(model="gpt-4")  
output_parser = StrOutputParser()  chain = prompt | model | output_parser  chain.invoke({"topic": "ice cream"})

chain = prompt | model | output_parser

|是 Unix 管道操作符, 将不同的组件链接到一起, 一组组件的输出作为下一组件的输入.

Prompt

prompt 是一个 BasePromptTemplate ,这意味着它接收一个模板变量的字典并生成一个 PromptValue 。一个 PromptValue 是一个完成提示的包装器,可以传递给 LLM (接受字符串作为输入)或 ChatModel (接受消息序列作为输入)。它可以与任何语言模型类型一起工作,因为它定义了生成 BaseMessage 和生成字符串的逻辑。

以下是 PromptValue 的输入

prompt_value = prompt.invoke({"topic": "ice cream"})prompt_value
# ChatPromptValue(messages=[HumanMessage(content='tell me a short joke about ice cream')])prompt_value.to_messages()
# [HumanMessage(content='tell me a short joke about ice cream')]prompt_value.to_string()
# 'Human: tell me a short joke about ice cream'

Model

然后将 PromptValue 传递给 model 。在这种情况下,我们的 model 是一个 ChatModel ,意味着它将输出一个 BaseMessage

message = model.invoke(prompt_value)  message
# AIMessage(content="Why don't ice creams ever get invited to parties?\n\nBecause they always bring a melt down!")

如果我们的 model 是一个 LLM ,它会输出一个字符串。

from langchain_openai.llms import OpenAI  llm = OpenAI(model="gpt-3.5-turbo-instruct")  
llm.invoke(prompt_value)# '\n\nRobot: Why did the ice cream truck break down? Because it had a meltdown!'

Output parser

最后,我们将我们的 model 输出传递给 output_parser ,这是一个 BaseOutputParser ,它接受字符串或 BaseMessage 作为输入。这个 StrOutputParser 特别简单地将任何输入转换为字符串

output_parser.invoke(message)# "Why did the ice cream go to therapy? \n\nBecause it had too many toppings and couldn't find its cone-fidence!"

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

相关文章:

深入浅出 langchain 1. Prompt 与 Model

示例 从代码入手来看原理 from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI prompt ChatPromptTemplate.from_template("tell me a short joke about…...

C#二进制、十进制、十六进制数据转换

目录 1、10进制整数转二进制BOOL数组 2、二进制BOOL数组转10进制整型 3、10进制转16进制字符串 4、16进制字符串转10进制 5、16进制字符串转二进制BOOL数组 6、二进制BOOL数组转16进制字符串 1、10进制整数转二进制BOOL数组 /// <summary>/// 10进制整数转二进制BO…...

晶方科技:台积电吃饱,封装迎春?

半导体产业链掀起涨价潮&#xff0c;先进封装迎接利好。 这里我们来聊国内先进封装企业——晶方科技。 近期&#xff0c;由于产能供不应求&#xff0c;台积电决定上调先进封装产品价格&#xff0c;还表示订单已经排到2026年。 大哥吃不下了&#xff0c;剩下的订单全都是空间。…...

ConcurrentModificationException

正在用Iterator迭代器循环操作的集合不能调用集合的删除方法&#xff0c;否则就会报异常&#xff1a;ConcurrentModificationException。 (调用迭代器的remove方法可以) package test;import java.io.*; import java.util.*;public class Demo {public static void main(Strin…...

倾斜摄影OSGB一键轻量化输出3dTiles!

老子云为打通OSGB应用通路&#xff0c;研发了OSGB格式一键转换3dTiles技术服务&#xff0c;通过轻量化操作即可快速实现格式间的转换&#xff0c;并且转换后模型可直接使用amrt展示框架加载、二次开发深度应用&#xff0c;此项服务已在平台上线&#xff0c;欢迎用户体验。接下来…...

深度清洁:使用npm prune命令优化你的Node.js项目

标题&#xff1a;深度清洁&#xff1a;使用npm prune命令优化你的Node.js项目 在Node.js的世界中&#xff0c;随着项目的不断扩展&#xff0c;package.json文件中的依赖项可能会变得冗余和膨胀。未使用的依赖项不仅会占用不必要的磁盘空间&#xff0c;还可能引入安全风险。幸运…...

[Gstreamer] gstbasesink 的 QOS 机制

前言&#xff1a; gstreamer里很多element都提供 QOS 机制&#xff0c;src&#xff0c;filter 和 sink 都有。Sink element 的 QOS 机制由 gstbasesink 统一提供。 qos (quality of service) 是一种评价机制&#xff0c;这个领域中都有这一概念&#xff0c;比如网络的qos。…...

关于bash脚本中extglob不生效的问题

在bash脚本中&#xff0c;我们可以通过&#xff1a; shopt -s extglob 为后续代码提供通配功能。 但如果在block中设置&#xff0c;将不会生效。如&#xff1a; if true; thenshopt -s extglob... fi这是因为&#xff1a; you cannot put shopt -s extglob inside a statement…...

idea运行报错 java: 错误: 无效的源发行版:16

1、打开File——>Project Structure——>Project&#xff1b;选择电脑安装的JDK版本。 并检查File——>Project Structure——>Modules的JDK版本...

selenium 处理网页上的弹窗

处理网页上的弹窗按钮&#xff0c;主要取决于弹窗的类型。在Web自动化测试中&#xff0c;常见的弹窗类型包括&#xff1a;JavaScript弹窗&#xff08;如alert、confirm和prompt弹窗&#xff09;和Web页面自定义弹窗&#xff08;通常是HTML元素实现的&#xff09;。以下是处理这…...

光模块市场受益于AI热潮同比增长45%,行业前景看好

近日&#xff0c;市场研究机构YOLE Group在最新的市场报告中指出&#xff0c;AI驱动的光模块市场将出现同比45%的增长。预计至2024年&#xff0c;数据通信领域的人工智能光收发器市场将实现高达45%的同比增长&#xff0c;展现出了强大的市场活力和广阔的发展前景。 光收发器市…...

qt经典界面框架

目的 其实就是一个简单的界面显示&#xff0c;是很常用的形式。 说起来简单也是简单&#xff0c;但当初&#xff0c;刚开始做时&#xff0c;感觉非常的复杂&#xff0c;不知如何下手。 现在感觉简单多了。 这个框架利用了QT的现成的MainWindow与QDockWidget&#xff0c;这样就…...

微信群聊不见了?掌握这4个技巧轻松找回,简直太爽了

微信&#xff0c;作为国内最受欢迎的社交应用之一&#xff0c;其群聊功能极大地方便了人们的工作与生活。然而&#xff0c;随着加入的群聊数量日益增多&#xff0c;如何快速找到并管理这些群聊成为了一个难题。 幸运的是&#xff0c;微信提供了一些实用的技巧&#xff0c;帮助…...

Python Type Hint有啥用

Python 的类型提示&#xff08;Type Hint&#xff09;是 Python 3.5 引入的一种静态类型检查功能。类型提示的主要目的是增强代码的可读性、可维护性和错误检测能力。虽然 Python 仍然是动态类型的语言&#xff0c;但类型提示可以帮助开发者在编码和维护过程中受益匪浅。 类型…...

【深度学习】基于因果表示学习的CITRIS模型原理和实验

1.引言 1.1.本文的主要内容 理解动态系统中的潜在因果因素&#xff0c;对于智能代理在复杂环境中进行有效推理至关重要。本文将深入介绍CITRIS&#xff0c;这是一种基于变分自编码器&#xff08;VAE&#xff09;的框架&#xff0c;它能够从时间序列图像中提取并学习因果表示&…...

CentOS9镜像下载地址加速下载

CentOS 9 是 CentOS 项目的最新版本之一&#xff0c;它基于 RHEL&#xff08;Red Hat Enterprise Linux&#xff09;9 的源代码构建。CentOS&#xff08;Community ENTerprise Operating System&#xff09;是一个免费的企业级 Linux 发行版&#xff0c;旨在提供一个与 RHEL 兼…...

GPT-5:博士级智能的跨越——未来已来,人机共生的新篇章

在这个科技日新月异的时代&#xff0c;每一次技术的飞跃都预示着人类文明向前迈出的一大步。随着人工智能&#xff08;AI&#xff09;领域的持续突破&#xff0c;我们正站在一个前所未有的转折点上&#xff0c;而CPT&#xff08;假设的模型系列代号&#xff0c;对应GPT&#xf…...

陶建辉入选 2023 年度“中国物联网行业卓越人物榜”

在这个技术飞速发展的时代&#xff0c;物联网行业作为推动社会进步的重要力量&#xff0c;正在不断地演化和革新。近日&#xff0c;中国智联网生态大会暨“2023 物联之星”年度榜单颁奖典礼在上海浦东举行。现场公布了拥有物联网行业奥斯卡奖之称的 ——“物联之星 2023 中国物…...

2024南京国际自有品牌产品博览会

展会名称&#xff1a;2024南京国际自有品牌产品博览会 展会时间&#xff1a;2024年10月11-13日 展会地点&#xff1a;南京国际博览中心 展览规模&#xff1a;36000平米 详询主办方陆先生 I38&#xff08;前三位&#xff09; I82I&#xff08;中间四位&#xff09; 9I72&…...

网络安全入门教程(非常详细)从零基础入门到精通,看完这一篇你就是网络安全高手了。

关于我 我算是“入行”不久的一个新人安全工作者&#xff0c;为什么是引号呢&#xff0c;因为我是个“半个野路子”出身。早在13年的时候&#xff0c;我在初中时期就已经在90sec、wooyun等社区一直学习、报告漏洞。后来由于升学的压力&#xff0c;我逐渐淡出了安全圈子&#x…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...