当前位置: 首页 > news >正文

[深度学习]循环神经网络RNN

RNN(Recurrent Neural Network,即循环神经网络)是一类用于处理序列数据的神经网络,广泛应用于自然语言处理(NLP)、时间序列预测、语音识别等领域。与传统的前馈神经网络不同,RNN具有循环结构,能够通过“记忆”前一时刻的信息来处理序列数据。

RNN的基本结构和工作原理

RNN的关键特性在于它的循环连接,即网络中的隐藏层节点不仅接收当前输入,还接收前一个时刻隐藏层的状态。这个结构使得RNN能够捕捉到数据序列中的时间依赖关系。

具体结构
  1. 输入层(Input Layer):接收当前时刻的输入数据。
  2. 隐藏层(Hidden Layer):具有循环连接,既接收当前时刻的输入,也接收前一个时刻隐藏层的输出。
  3. 输出层(Output Layer):根据隐藏层的状态生成当前时刻的输出。

RNN的工作流程

假设输入序列为 x1,x2,…,xT,其中xt​ 代表序列在时间 t 的输入。隐藏层的状态 ht​ 可以表示为:
在这里插入图片描述
其中:

  • Wxh 是输入到隐藏层的权重矩阵。
  • Whh​ 是隐藏层到隐藏层的权重矩阵。
  • bh 是隐藏层的偏置向量。
  • σ 是激活函数(例如tanh或ReLU)。

输出 yt 则可以表示为:
在这里插入图片描述
其中:

  • Why 是隐藏层到输出层的权重矩阵。
  • by 是输出层的偏置向量。
  • ϕ 是输出层的激活函数(例如softmax用于分类任务)。

RNN的训练

RNN的训练过程使用反向传播算法,但因为其循环结构,具体使用的是“反向传播通过时间(Backpropagation Through Time,BPTT)”算法。BPTT算法将序列展开成多个时间步长,然后像传统的神经网络一样进行反向传播。

RNN的局限性

  1. 梯度消失和梯度爆炸:由于RNN在时间步长上进行反向传播,长序列训练时可能会遇到梯度消失或梯度爆炸的问题。这使得RNN难以学习长距离依赖关系。
  2. 长距离依赖问题:标准RNN难以捕捉到长时间步长之间的依赖关系。

RNN的改进

为了解决上述问题,有几种RNN的变体被提出:

  1. 长短期记忆网络(LSTM):通过引入遗忘门、输入门和输出门来控制信息的流动,有效缓解梯度消失问题。
  2. 门控循环单元(GRU):简化了LSTM的结构,但仍然能够有效处理长距离依赖。

代码示例

使用随机生成的销售数据作为输入序列,并尝试预测序列的下一个值。

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense
import matplotlib.pyplot as plt# 生成随机销售数据
def generate_sales_data(seq_length, num_samples):X = []y = []for _ in range(num_samples):start = np.random.rand() * 100data = np.cumsum(np.random.rand(seq_length + 1) - 0.5) + startX.append(data[:-1])y.append(data[-1])return np.array(X), np.array(y)# 参数设置
seq_length = 50
num_samples = 1000
X, y = generate_sales_data(seq_length, num_samples)# 数据集拆分为训练集和测试集
split = int(0.8 * num_samples)
X_train, X_test = X[:split], X[split:]
y_train, y_test = y[:split], y[split:]# 将数据调整为RNN输入的形状
X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))# 模型构建
model = Sequential([SimpleRNN(50, activation='tanh', input_shape=(seq_length, 1)),Dense(1)
])# 模型编译
model.compile(optimizer='adam', loss='mse')# 打印模型摘要
model.summary()# 模型训练
history = model.fit(X_train, y_train, epochs=20, validation_data=(X_test, y_test))# 模型评估
loss = model.evaluate(X_test, y_test)
print(f"Test Loss: {loss}")# 预测一些值并可视化
y_pred = model.predict(X_test)
plt.plot(y_test, label='True')
plt.plot(y_pred, label='Predicted')
plt.legend()
plt.show()

RNN的应用

  1. 自然语言处理(NLP):如语言模型、机器翻译、文本生成等。
  2. 时间序列预测:如股票价格预测、天气预测等。
  3. 语音识别:如自动语音识别系统。
  4. 视频处理:如视频分类、动作识别等。

总之,RNN及其变体是处理序列数据的强大工具,通过循环结构捕捉时间依赖关系,为许多应用领域提供了有效的解决方案。

相关文章:

[深度学习]循环神经网络RNN

RNN(Recurrent Neural Network,即循环神经网络)是一类用于处理序列数据的神经网络,广泛应用于自然语言处理(NLP)、时间序列预测、语音识别等领域。与传统的前馈神经网络不同,RNN具有循环结构&am…...

【C++:list】

list概念 list是一个带头的双向循环链表,双向循环链表的特色:每一个节点拥有两 个指针进行维护,俩指针分别为prev和next,prev指该节点的前一个节点,next为该节点的后一个节点 list的底层实现中为什么对迭代器单独写一个结构体进行…...

解锁 Apple M1/M2 上的深度学习力量:安装 TensorFlow 完全指南

前言 随着 Apple M1 和 M2 芯片的问世,苹果重新定义了笔记本电脑和台式机的性能标准。这些强大的芯片不仅适用于日常任务,还能处理复杂的机器学习和深度学习工作负载。本文将详细介绍如何在 Apple M1 或 M2 芯片上安装和配置 TensorFlow,助你…...

Apache Iceberg:现代数据湖存储格式的未来

Apache Iceberg 是一个开源的表格式,用于在分布式数据湖中管理大规模数据集。它由 Netflix 开发,并捐赠给 Apache 基金会。Iceberg 的设计目标是解决传统数据湖存储格式(如 Apache Hive 和 Apache Parquet)在大规模数据管理中的一…...

【离散数学·图论】(复习)

一、基本概念 1.一些基本术语: 2.点u,v邻接(或相邻): 边e称为关联顶点u和v,or e连接u和v; 3.G(V,E)中,顶点v所有邻居的集合:N(v), 成为v的邻域。 4.度 : deg(v) 5.悬挂点:度为1的…...

【ONLYOFFICE震撼8.1】ONLYOFFICE8.1版本桌面编辑器测评

随着远程工作的普及和数字化办公的发展,越来越多的人开始寻找一款具有强大功能和便捷使用的办公软件。在这个时候,ONLYOFFICE 8.1应运而生,成为了许多用户的新选择。ONLYOFFICE 8.1是一种办公套件软件,它提供了文档处理、电子表格…...

Shell 脚本编程保姆级教程(上)

一、运行第一个 Shell 脚本 1.1 Shell 脚本 Shell 脚本(shell script),是一种为 shell 编写的脚本程序。 业界所说的 shell 通常都是指 shell 脚本,但读者朋友要知道,shell 和 shell script 是两个不同的概念。 由…...

凸优化相关文章汇总

深度学习/机器学习入门基础数学知识整理(三):凸优化,Hessian,牛顿法_深度学习和凸优化-CSDN博客 深度学习/机器学习入门基础数学知识整理(四):拟牛顿法、BFGS、L-BFGS、DFP、共轭梯…...

Java鲜花下单预约系统源码小程序源码

让美好触手可及 🌸一、开启鲜花新篇章 在繁忙的都市生活中,我们总是渴望那一抹清新与美好。鲜花,作为大自然的馈赠,总能给我们带来无尽的惊喜与愉悦。但你是否曾因为工作繁忙、时间紧张而错过了亲自挑选鲜花的机会?今…...

网络变压器和RJ45接线的方法

网络变压器在以太网硬件电路设计中扮演着重要的角色,它主要用于信号电平耦合、隔离外部干扰、实现阻抗匹配以及增加传输距离。而RJ45接口则是以太网连接的标准化接口,它提供了与网络电缆的连接点。 网络变压器与RJ45的接线方法通常遵循以下步骤&#xf…...

Matlab/simulink三段式电流保护

电流1段仿真波形如下所示 电流2段仿真波形如下所示 电流3段仿真波形如下所示...

OOXML入门学习

进入-飞入 <par> <!-- 这是一个并行动画序列的开始。"par"代表并行&#xff0c;意味着在这个标签内的所有动画将同时开始。 --><cTn id"5" presetID"2" presetClass"entr" presetSubtype"4" fill"hold&…...

k8s集群node节点加入失败

出现这种情况&#xff1a; [preflight] FYI: You can look at this config file with kubectl -n kube-system get cm kubeadm-config -o yaml [kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml" [kubelet-start] Writing kub…...

layui+jsp项目中实现table单元格嵌入下拉选择框功能,下拉选择框可手动输入内容或选择默认值,修改后数据正常回显。

需求 table列表中的数据实现下拉框修改数据&#xff0c;当默认的下拉框不符合要求时&#xff0c;可手动输入内容保存。内容修改后表格显示修改后的值同时表格不刷新。 实现 layui框架下拉框组件只能选择存在的数据&#xff0c;不支持将输入的内容显示在input中的功能&#x…...

2024年客户体验的几个预测

数字化转型、以客户为中心的理念、数字技术的发展和产品的不断创新&#xff0c;都为客户体验带来了巨大的改变。 目前&#xff0c;我们看到很多公司都在致力于塑造一种以客户为中心的商业模式。企业开始用更多技术、更多数据和更多产品来强化自己在客户体验方面的能力。 那么&a…...

【C++】动态内存管理new和delete

文章目录 一、C的内存管理方式二、new和delete的用法1.操作内置类型2.操作自定义内置类型 三、new和delete的底层实现1.operator new和operator delete函数2.new和delete的实现原理 四、定位new表达式五、malloc/free和new/delete的区别 一、C的内存管理方式 之前在C语言的动态…...

Java面向对象特性

Java继承&#xff1a; 继承的概念&#xff1a; 在Java中&#xff0c;继承&#xff08;inheritance&#xff09;是面向对象编程的一个重要概念&#xff0c;它允许一个类&#xff08;子类&#xff09;继承另一个类&#xff08;父类&#xff09;的属性和方法。通过继承&#xff0c…...

odoo17 tree视图添加按钮

需求描述 点击下图中tree视图上的同步退货单按钮,弹出相应的form视图进行退货单同步,然后点击同步按钮调用后端python代码处理。 实现步骤 主要文件目录结构 js文件的创建 /** @odoo-module **/ import {registry } from "@web/core/registry"; import {listVie…...

PreparedStatement 与Statement 的区别,以及为什么推荐使用 PreparedStatement ?

在Java中&#xff0c;PreparedStatement和Statement都是用于执行SQL语句的重要接口&#xff0c;但它们在功能、安全性和性能上有着显著的差异。理解这些差异对于编写高效且安全的数据库应用程序至关重要。 Statement&#xff1a;基本的SQL执行者 首先&#xff0c;让我们从Sta…...

wsl ubuntu 安装Anaconda3步骤

如何在Ubuntu上安装Anaconda3呢?本章记录整个安装过程。 1、下载脚本 https://mirrors.bfsu.edu.cn/anaconda/archive/Anaconda3-2023.09-0-Linux-x86_64.sh 下载之后,将脚本上传到Ubuntu里。 2、安装脚本 bash Anaconda3-2021.11-Linux-x86_64.sh根据提示进行安装,提示输…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

篇章二 论坛系统——系统设计

目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...

13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析

LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...