一文弄懂线性回归模型
1、引言
今天,我们将深入探讨机器学习中的三个关键概念:线性回归、代价函数和梯度下降。这些概念构成了许多机器学习算法的基础。起初,我决定不写一篇关于这些主题的文章,因为它们已经被广泛涉及。不过,我改变了主意,因为理解这些概念对于理解神经网络等更高级的主题至关重要。
闲话少说,我们直接开始吧!
2、问题引入
与任何机器学习问题一样,我们首先要回答一个具体的问题。在本例中,我们的朋友马克正在考虑出售他 2400 平方英尺的房子,并向我们寻求帮助,以确定最合适的挂牌价格。
凭直觉,我们首先要查找朋友所在社区的同类房屋。经过一番挖掘,我们找到了附近三栋房子的清单,并查看了它们的售价。当然,一个典型的数据集会有数千甚至数万个数据点,但我们只用这三栋房子就够了。
接着,让我们来绘制这些数据:
通过观察数据,房屋价格似乎与房屋面积呈线性关系。为了模拟这种关系,我们可以使用一种称为线性回归的机器学习技术。这需要在散点图上画出一条最能代表数据点模式的线。我们的模型可能是这样的:
根据这条线,2400 平方英尺的房子应该卖多少钱?
大概$260,000。这就是答案。
现在最大的问题是:我们如何确定数据的最佳拟合线?
3、 确认最佳拟合方程
经过上述分析,我们的问题转化为如何确定数据的最佳拟合线?我画的线可能有点偏,就像这样:
我们可以清楚地知道,这种情况下对数据的拟合程度远不如第一种情形。要找出最佳的拟合线,我们首先要做的就是用数学方法来衡量一条糟糕的线。
让我们来看看这条 "相对糟糕 "的拟合线,根据这条线,一栋 2000 平方英尺的房子应该卖 14 万美元,而我们知道它实际上卖了 30 万美元:
线上其他数值也有明显差异:
平均而言,这条线的上预测差额约为 94,000 美元(50,000 美元 + 160,000 美元 + 72,000 美元/3)。
事实上,我们有预测差额更小的预测线,如下:
这条线路的平均预测差额约为 44 000
美元,这要好得多。这 4.4
万美元被称为使用这条线的cost
。cost
就是用来衡量这条线与真实数据的偏差程度。与真实数据偏差最小或cost
最低的预测线就是最佳选择。要找出哪条线是最佳线,我们需要使用损失cost
函数。
4、损失函数
以上章节我们利用平均绝对误差 (MAE) 代价函数来确定实际房价与预测房价的偏差。这基本上是计算实际房价(用 y 表示,因为它代表 y 轴上的值)与预测房价(用 ŷ 表示)偏离程度的平均值。我们可以这样用以下数学公式来计算 MAE:
注:在计算 MAE 时使用绝对值,因为绝对值可确保预测值与实际值之间的差值始终为正值,无论预测值是高还是低。这样就可以公平地比较不同预测值之间的误差,因为如果不采用绝对值,正负差值就会抵消。
根据不同机器学习算法,我们可以采用不同类型的成本代价函数,也叫损失函数。对于我们的问题,我们将不使用 MAE,而是采用一种更加常用的方法,即平均平方误差 (MSE),它计算的是预测房价与实际房价之差的平方平均数。
归根结底,任何代价函数的目的都是使其取值最小化,并尽可能降低损失。
5、 直线方程
在深入研究损失函数之前,让我们先回顾一下基础知识。下面是一条直线的示例:
y = 1 + 2x
,第一项数字称为截距,它告诉我们起始线应该有多高。
第二项告诉我们直线的角度(或专业术语,斜率):
既然我们已经理解了直线方程的工作原理,那么我们只需要确定这两个值的最佳值–斜率和截距,就可以得到线性回归问题的最佳拟合线。为了让事情变得更简单,让我们假设我们已经神奇地得到了斜率值 0.069。因此,我们的线性回归线方程如下:
要获得某一面积房屋的预测价格,我们只需输入截距值和所需房屋面积。例如,如果房屋面积为 1000 平方英尺,截距为 0时,如下:
得出预测房价为 69,000 美元。因此,我们现在要做的就是找到截距的最佳值,从而得到线性回归模型。
6、求解截距
如何来求解截距呢?有一种方法(我们很快就会发现这种方法非常乏味,而且并不有趣)是"暴力枚举",即反复猜测截距值,画一条 LR 线,然后计算 MSE。为了实验起见,让我们尝试一下这种方法。
首先随机猜测一个截距值(从 0 开始),然后绘制直线:
然后我们计算这条线的 MSE:
为了获得直观的理解,让我们在图表上绘制截距值和相应的 MSE:
接下来,我们将测试另一个截距值(比如 25),绘制相应的直线,并计算 MSE。
我们可以用不同的截距值(0、25、50、75、100、125、150 和 175)继续这一过程,直到最后得到如下图形:
从图中绘制的点可以看出,当截距设置为 100 时,MSE 最低。不过,在 75 和 100 之间可能还有另一个截距值,会导致更低的 MSE。寻找最小 MSE 的一种缓慢而痛苦的方法是,如下图所示,为截距设置更多的值:
尽管我们做出了努力,但仍无法确定我们已经找到了最低的 MSE 值。测试多个截距值的过程既繁琐又低效。幸运的是,梯度下降可以帮助我们解决这个问题,以更高效的方式找到最优解。这正是我们将在本系列第二部分中探讨的问题!
相关文章:

一文弄懂线性回归模型
1、引言 今天,我们将深入探讨机器学习中的三个关键概念:线性回归、代价函数和梯度下降。这些概念构成了许多机器学习算法的基础。起初,我决定不写一篇关于这些主题的文章,因为它们已经被广泛涉及。不过,我改变了主意&…...

uniApp获取实时定位
通过你获取的key放到项目manifest.json里面,对应填写你所需要的key值,还有高德用户名 用户名: key值的位置: 代码: html: <view class"intList pdNone"><view class"label">详细地…...
linux的source命令
用法 source file 也可以用.空格file来代替 . file 作用 在当前bash环境下读取并执行FileName中的命令. source(或点)令通常用于重新执行刚修改的初始化文档,如 .bash_profile 和 .profile等配置文件. 简单的说就是: source命令会把file里的命令在当前shell里一…...
特种作业操作证(焊接与热切割作业)2024年理论考试题库。
1.关于隐弧排烟罩下列说法正确的是()。 A.这类排烟罩适用于焊接大而长的焊件时排除电焊烟尘和有毒气体 B.这类排烟罩对焊接区实行密闭,能最大限度地减少臭氧等有毒气体的弥散 C.利用压缩空气从主管中高速喷出时,在副管形成负压…...

免交互和嵌入执行模式
目录 概念 语法格式 统计行数 赋值变量 修改密码编辑往文件里添加内容 编辑编辑引入变量 整体赋值编辑 加引号不赋值变量 expect实现免交互 免交互设置密码 免交互切换用户 嵌入执行模式 添加用户并免交互设置密码 免交互登录 传参实现ssh 练习 概念 …...

Hadoop版本演变、分布式集群搭建
Hadoop版本演变历史 Hadoop发行版非常的多,有华为发行版、Intel发行版、Cloudera Hadoop(CDH)、Hortonworks Hadoop(HDP),这些发行版都是基于Apache Hadoop衍生出来的。 目前Hadoop经历了三个大的版本。 hadoop1.x:HDFSMapReduce hadoop2.x…...
【Qt C++实现绘制仪表盘】
要在Qt C中绘制仪表盘,您可以使用QChart、QSeries、QBarSeries、QPointSeries等类。以下是一个简单的示例,演示如何使用这些类创建一个绘图仪表盘: #include <QApplication> #include <QChart> #include <QChartView> #in…...
一文看懂LLaMA 2:大型多模态模型的新里程碑
一文看懂LLaMA 2:大型多模态模型的新里程碑 LLaMA 2是OpenAI继GPT-3之后推出的又一重磅模型,它不仅在文本生成方面有所突破,而且在图像处理和语音识别等领域也展现出了令人印象深刻的能力。本文将全面介绍LLaMA 2的背景、技术细节、应用场景…...
基于Spring Boot构建淘客返利平台
基于Spring Boot构建淘客返利平台 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将讨论如何基于Spring Boot构建一个淘客返利平台。 淘客返利平台通过…...

Qt—贪吃蛇项目(由0到1实现贪吃蛇项目)
用Qt实现一个贪吃蛇项目 一、项目介绍二、游戏大厅界面实现2.1完成游戏大厅的背景图。2.2创建一个按钮,给它设置样式,并且可以跳转到别的页面 三、难度选择界面实现四、 游戏界面实现五、在文件中写入历史战绩5.1 从文件里提取分数5.2 把贪吃蛇的长度存入…...
Java导出Excel并邮件发送
一、导出Excel 添加maven依赖 <dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxml</artifactId><version>3.10-FINAL</version></dependency><dependency><groupId>org.apache.poi</groupI…...

【课程总结】Day12:YOLO的深入了解
前言 在【课程总结】Day11(下):YOLO的入门使用一节中,我们已经了解YOLO的使用方法,使用过程非常简单,训练时只需要三行代码:引入YOLO,构建模型,训练模型;预测…...
保护隐私,释放智能:使用LangChain和Presidio构建安全的AI问答系统
保护隐私,释放智能:使用LangChain和Presidio构建安全的AI问答系统 在人工智能(AI)飞速发展的今天,AI问答系统已经成为企业与客户互动的重要工具。然而,随之而来的个人数据隐私问题也日益凸显。如何在不泄露…...
【高考志愿】自动化
目录 一、专业概述 二、课程设计 三、就业前景与方向 四、志愿填报 五、自动化专业排名 一、专业概述 高考志愿自动化专业选择,无疑是迈向现代化工业与科技发展的一把金钥匙。自动化专业,作为现代工程领域的重要支柱,融合了计算机、电子…...

技巧类题目
目录 技巧类题目 136 只出现一次的数字 191 位1的个数 231. 2 的幂 169 多数元素 75 颜色分类 (双指针) 287. 寻找重复数 136 只出现一次的数字 给你一个 非空 整数数组 nums ,除了某个元素只出现一次以外,其余每个元素均…...
Vue3自定义指令参数修饰符值(3)
自定义指令参数修饰符值 在vue3中我们如何获取自定义的参数的内容,并根据业务来修改展示的内容呢,需要依靠mounted方法中的bindings参数来获取。 参考实例 directives/unit.js文件 export default function directiveUnit(app){app.directive("unit",{…...

HTML(23)——垂直对齐方式
垂直对齐方式 属性名:vertical-align 属性值效果baseline基线对齐(默认)top顶部对齐middle居中对齐bottom底部对齐 默认情况下浏览器对行内块,行内标签都按文字处理,默认基线对齐 导致图片看起来会偏上,文字偏下。 示例&#…...
linux查看二进制文件
在Linux中,查看二进制文件可以使用hexdump或xxd命令。 例如,要查看一个名为example.bin的二进制文件的内容,可以使用以下命令之一: 使用hexdump: bash hexdump -C example.bin使用xxd: bash xxd exam…...

营销翻车,杜国楹出面道歉,小罐茶的“大师作”故事仓皇结尾
“小罐茶,大师作”,这句slogan曾一度在央视平台长时间、高密度播放,成为家喻户晓的广告词,也打响了小罐茶品牌的名号。但同时,市场上关于“大师作”真实性的质疑也从未停息。 就在6月25日小罐茶十二周年发布会上&#…...
linux server下人脸检测与识别服务程序的系统架构设计
一、绪论 1.1 定义 1.2 研究背景及意义 1.3 相关技术综述 二、人脸检测与识别技术概述 2.1 人脸检测原理与算法 2.2 人脸识别技术及方法 2.3 人脸识别过程简介 三、人脸检测与识别服务程序的系统架构 3.1 系统架构设计 3.2 技术实现流程 四、后续设计及经验瞎谈 4.…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...