动手学深度学习(Pytorch版)代码实践 -计算机视觉-47转置卷积
47转置卷积


import torch
from torch import nn
from d2l import torch as d2l# 输入矩阵X和卷积核矩阵K实现基本的转置卷积运算
def trans_conv(X, K):h, w = K.shapeY = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))for i in range(X.shape[0]):for j in range(X.shape[1]):Y[i: i + h, j: j + w] += X[i, j] * Kreturn YX = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
print(trans_conv(X, K))
"""
tensor([[ 0., 0., 1.],[ 0., 4., 6.],[ 4., 12., 9.]])
"""# 使用高级API获得相同的结果
X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, bias=False)
tconv.weight.data = K
print(tconv(X))
"""
tensor([[[[ 0., 0., 1.],[ 0., 4., 6.],[ 4., 12., 9.]]]], grad_fn=<SlowConvTranspose2DBackward>)
"""# 填充、步幅和多通道
# 当将高和宽两侧的填充数指定为1时,转置卷积的输出中将删除第一和最后的行与列。
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding=1, bias=False)
tconv.weight.data = K
print(tconv(X))
# tensor([[[[4.]]]], grad_fn=<SlowConvTranspose2DBackward>)# 步幅为2的转置卷积的输出
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, stride=2, bias=False)
tconv.weight.data = K
print(tconv(X))
"""
tensor([[[[0., 0., 0., 1.],[0., 0., 2., 3.],[0., 2., 0., 3.],[4., 6., 6., 9.]]]]
"""X = torch.rand(size=(1, 10, 16, 16))
conv = nn.Conv2d(10, 20, kernel_size=5, padding=2, stride=3)
tconv = nn.ConvTranspose2d(20, 10, kernel_size=5, padding=2, stride=3)
print(conv(X).shape) # torch.Size([1, 20, 6, 6])
print(tconv(conv(X)).shape) # torch.Size([1, 10, 16, 16])
print(tconv(conv(X)).shape == X.shape) # True# 与矩阵变换的联系
X = torch.arange(9.0).reshape(3, 3)
K = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
Y = d2l.corr2d(X, K)
print(Y)
"""
tensor([[27., 37.],[57., 67.]])
"""# 将卷积核K重写为包含大量0的稀疏权重矩阵W。 权重矩阵的形状是4 * 9
def kernel2matrix(K):k, W = torch.zeros(5), torch.zeros((4, 9))k[:2], k[3:5] = K[0, :], K[1, :]W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, kreturn WW = kernel2matrix(K)
print(W)
"""
tensor([[1., 2., 0., 3., 4., 0., 0., 0., 0.],[0., 1., 2., 0., 3., 4., 0., 0., 0.],[0., 0., 0., 1., 2., 0., 3., 4., 0.],[0., 0., 0., 0., 1., 2., 0., 3., 4.]])
"""print(Y == torch.matmul(W, X.reshape(-1)).reshape(2, 2))
"""
tensor([[True, True],[True, True]])
"""# 使用矩阵乘法来实现转置卷积
Z = trans_conv(Y, K)
print(Z == torch.matmul(W.T, Y.reshape(-1)).reshape(3, 3))
"""
tensor([[True, True, True],[True, True, True],[True, True, True]])
"""
相关文章:
动手学深度学习(Pytorch版)代码实践 -计算机视觉-47转置卷积
47转置卷积 import torch from torch import nn from d2l import torch as d2l# 输入矩阵X和卷积核矩阵K实现基本的转置卷积运算 def trans_conv(X, K):h, w K.shapeY torch.zeros((X.shape[0] h - 1, X.shape[1] w - 1))for i in range(X.shape[0]):for j in range(X.shap…...
LinkedIn被封原因和解封方法
对于初识领英和对领英生态规则不熟悉的人来说,很容易造成领英账号被封号(被限制登录)的情况,那么如何才能避免和解决领英帐号被封号(被限制登录)的难题呢? 领英帐号被封号或被限制登录主要会有两类情况。 首先要搞清楚, Linkedi…...
redis sentinel 部署
安装Redis 建议版本不要太低 > 6.2,我这里是redis 7.2.5 curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg echo "deb [signed-by/usr/share/keyrings/redis-archive-keyring.gpg] http…...
spring boot (shiro)+ websocket测试连接不上的简单检测处理
1、用前端连接测试的demo一切正常,但是到了项目中连接不上了 一开始以为是地址错,但是换了apifox测试也是不可以。 2、考虑是shiro进行了拦截了,所以就访问不到了地址,那么就放行。 3、再次用apifox测试,成功了。 当然…...
Jenkins - Python 虚拟环境
Jenkins - Python 虚拟环境 引言Python 虚拟环境创建 Python 虚拟环境安装 virtualenv(可选)创建虚拟环境激活虚拟环境安装依赖包退出虚拟环境(可选)注意 Python 虚拟环境实践 引言 Automation 脚本通常会部署到 Jenkins 上运行&…...
每日一道算法题 面试题 08.08. 有重复字符串的排列组合
题目 面试题 08.08. 有重复字符串的排列组合 - 力扣(LeetCode) Python class Solution:def permutation(self, S: str) -> List[str]:# 以索引记录字符是否用过lelen(S)idx[_ for _ in range(le) ]# 组合得到的字符串combine[]*leans[]# 递归def fu…...
Apache Kylin资源管理全指南:优化你的大数据架构
标题:Apache Kylin资源管理全指南:优化你的大数据架构 摘要 Apache Kylin是一个开源的分布式分析引擎,旨在为大规模数据集提供高性能的SQL查询能力。在Kylin中进行有效的资源管理对于确保查询性能和系统稳定性至关重要。本文将详细介绍如何…...
计算机网络微课堂(湖科大教书匠)TCP部分
计算机网络微课堂(湖科大教书匠)TCP部分 【计算机网络微课堂(有字幕无背景音乐版)】 TCP的流量控制 一般来说,我们希望数据传输得更快一些。但如果发送方把数据发送得过快,接收方就可能来不及接收&#…...
C++ 字符串介绍
在C编程中,字符串是非常重要的数据类型之一。字符串用于表示文本信息,处理字符串是许多程序的基本需求。C提供了多种方式来处理字符串,包括C风格的字符串(C-strings)和C标准库中的std::string类。本文将介绍这两种字符…...
[Cloud Networking] BGP
1. AS (Autonomous System) 由于互联网规模庞大,所以网络会被分为许多 自治系统(AS-Autonomous system)。 所属类型ASN名称IPv4 数量IPv6数量运营商ISPAS3356LEVEL3 - Level 3 Parent, LLC, US29,798,83273,301,954,048互联网企业AS15169GO…...
Typora failed to export as pdf. undefined
变换版本并没有用,调整图片大小没有用 我看到一个博客后尝试出方案 我的方法 解决:从上图中的A4,变为其他,然后变回A4 然后到处成功,Amazing! 参考: Typora 导出PDF 报错 failed to export…...
windows 10 安装tcping 使用教程
1 官网下载:tcping下载 2 复制tcping 到win10系统目录C:\Windows\System32 3 tcping 网址测试,可以指定端口 4 tcping 测试端口联通 5 tcping http模式...
[leetcode hot 150]第一百二十二题,买卖股票的最佳时机Ⅱ
题目: 给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。 在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。 返回 你能获得的 最大…...
openstack Y版在ubuntu22.04上不能创建超过8个cpu的虚拟机问题解决
环境 openstack 版本: Y版25.2.1 操作系统:ubuntu22.04 问题 创建16 vcpu的虚拟机,报错: Failed to build and run instance: libvirt.libvirtError: error from service: GDBus.Error:org.freedesktop.DBus.Error.InvalidArgs…...
全国31省细分产品出口数据集(2002-2022年)
数据简介:整理全国31个省直辖市自治区按hs码分的22类细分产品的出口数据,只包含22类的细分,不包含更细的类目。可用来计算出口产品质量,出口产品技术复杂度等指标,数据区间为2002-2022年。 数据名称:31省细…...
1,Windows-本地Linux 系统(WSL)
目录 第一步电脑设置 第二步安装Ubuntu 第三文件传递 开发人员可以在 Windows 计算机上同时访问 Windows 和 Linux 的强大功能。 通过适用于 Linux 的 Windows 子系统 (WSL),开发人员可以安装 Linux 发行版(例如 Ubuntu、OpenSUSE、Kali、Debian、Arc…...
K8S 角色/组件及部署方式的简单概述
1.宏观架构图 2.角色详情 2.1 Master(Controller Plane) 早期是叫 Master 节点,后期改名为 Controller Plane,负责整个集群的控制和管理 Master 不会干活的(当然你让它干也是会干的,涉及到污点容忍),而是起到访问入口ÿ…...
堆【模板】小根堆堆【模板】大根堆(回)
目录 堆【模板】小根堆 题目描述1 输入1 输出1 样例输入 1 样例输出 1 提示1 代码1 堆【模板】大根堆 题目描述2 输入 输出 样例输入2 样例输出2 提示2 代码2 堆【模板】小根堆 题目描述1 初始小根堆为空,我们需要支持以下3种操作: 操作…...
【JavaScript】JavaScript简介
希望文章能给到你启发和灵感~ 如果觉得文章对你有帮助的话,点赞 关注 收藏 支持一下博主吧~ 阅读指南 JavaScript入门(1)————JavaScript简介开篇说明一、什么是JavaScript二、JavaScript的使用2.1 开发工具的选择…...
pg_rman:备份和恢复管理工具#postgresql培训
pg_rman 是 PostgreSQL 的在线备份和恢复工具。 pg_rman 项目的目标是提供一种与 pg_dump 一样简单的在线备份和 PITR 方法。此外,它还为每个数据库集群维护一个备份目录。用户只需一个命令即可维护包括存档日志在内的旧备份。 #PG培训#PG考试#postgresql考试#pos…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
