网络编程常见问题
1、TCP状态迁移图

2、TCP三次握手过程
2.1、握手流程

1、TCP服务器进程先创建传输控制块TCB,时刻准备接受客户进程的连接请求,此时服务器就进入了LISTEN(监听)状态;
2、TCP客户进程也是先创建传输控制块TCB,然后向服务器发出连接请求报文,这是报文首部中的同部位SYN=1,同时选择一个初始序列号 seq=x ,此时,TCP客户端进程进入了 SYN-SENT(同步已发送状态)状态。TCP规定,SYN报文段(SYN=1的报文段)不能携带数据,但需要消耗掉一个序号。
3、TCP服务器收到请求报文后,如果同意连接,则发出确认报文。确认报文中应该 ACK=1,SYN=1,确认号是ack=x+1,同时也要为自己初始化一个序列号 seq=y,此时,TCP服务器进程进入了SYN-RCVD(同步收到)状态。这个报文也不能携带数据,但是同样要消耗一个序号。
4、TCP客户进程收到确认后,还要向服务器给出确认。确认报文的ACK=1,ack=y+1,自己的序列号seq=x+1,此时,TCP连接建立,客户端进入ESTABLISHED(已建立连接)状态。TCP规定,ACK报文段可以携带数据,但是如果不携带数据则不消耗序号。
5、当服务器收到客户端的确认后也进入ESTABLISHED状态,此后双方就可以开始通信了
2.2、三次握手发生在socket的那几个函数中

从图中可以看出,当客户端调用connect时,触发了连接请求,向服务器发送了SYN J包,这时connect进入阻塞状态;服务器监听到连接请求,即收到SYN J包,调用accept函数接收请求向客户端发送SYN K ,ACK J+1,这时accept进入阻塞状态;客户端收到服务器的SYN K ,ACK J+1之后,这时connect返回,并对SYN K进行确认;服务器收到ACK K+1时,accept返回,至此三次握手完毕,连接建立
2.3、连接队列
syn队列:半连接队列
accept队列:全连接队列
3、TCP四次挥手过程
四次挥手不分客户端、服务器,谁先发发起close则谁就是主动断开一方,否则为主动断开一方,主动方发生FIN包后会进入到FIN_WAIT_1状态,也就是不管客户端还是服务器都有可能进入FIN_WAIT_1的状态,也都有可能进入TIME_WAIT的状态。
socket中的四次握手释放连接的过程调用的函数:
图示过程如下:
- 某个应用进程首先调用close主动关闭连接,这时TCP发送一个FIN M;
- 另一端接收到FIN M之后,执行被动关闭,对这个FIN进行确认。它的接收也作为文件结束符传递给应用进程,因为FIN的接收意味着应用进程在相应的连接上再也接收不到额外数据;
- 一段时间之后,接收到文件结束符的应用进程调用close关闭它的socket。这导致它的TCP也发送一个FIN N;
- 接收到这个FIN的源发送端TCP对它进行确认。
这样每个方向上都有一个FIN和ACK。
4、为什么会有WIME_WAIT状态
为了避免最后一次ACK丢失对端没有收到,对端会重传FIN执行第三次跟第四次挥手,TIME_WAIT状态还能够响应,也就是为了确保对方收到最后的ACK,从而确保对方也能正常的断开连接
5、出现大量的CLOSE_WAIT状态连接的原因
close_wait状态出现在被动断开的一方,如果被动断开,一般recv会返回0,出现大量的close_wait是因为对方的断开事件没有得到及时的处理,解决方式就是及时处理对端的close事件(recv() == 0),可以将IO事件的检测跟io事件的响应分开处理,以保证能够及时的检测到IO断开事件
6、哪些场景会出来CLOSING的状态
双方同时调用close

7、TCP首部长度,有哪些字段
详见:TCP之报文首部格式 - Jummyer - 博客园 (cnblogs.com)

8、TCP在listen时的参数backlog的意义
backlog 表示accept全连接队列的大小,也就是三次握手完成后,server没有调用accept从 全连接队列 取出连接时,连接队列中最大可存放的数量
9、acept发生在三次握手的哪一步
第三步

10、SYN攻击
服务器端的资源分配是在二次握手时分配的,而客户端的资源是在完成三次握手时分配的,所以服务器容易受到SYN洪泛攻击。SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server则回复确认包,并等待Client确认,由于源地址不存在,因此Server需要不断重发直至超时,这些伪造的SYN包将长时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络拥塞甚至系统瘫痪。SYN 攻击是一种典型的 DoS/DDoS 攻击
11、TCP与UDP的区别
11.1、TCP、UDP的区别
- TCP---传输控制协议,提供的是面向连接、可靠的字节流服务。当客户和服务器彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能传输数据。
- UDP---用户数据报协议,是一个简单的面向数据报的运输层协议。UDP不提供可靠性,它只是把应用程序传给IP层的数据报发送出去,但是并不能保证它们能到达目的地。
1)TCP是面向连接的,UDP是面向无连接的
2)UDP程序结构较简单
3)TCP是面向字节流的,UDP是基于数据报的
4)TCP保证数据正确性,UDP可能丢包
5)TCP保证数据顺序到达,UDP不保证
11.2、TCP、UDP的优缺点
TCP优点:可靠稳定
TCP的可靠体现在TCP在传输数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制,在数据传完之后,还会断开来连接用来节约系统资源。
TCP缺点:慢,效率低,占用系统资源高,易被攻击
在传递数据之前要先建立连接,这会消耗时间,而且在数据传递时,确认机制、重传机制、拥塞机制等都会消耗大量时间,而且要在每台设备上维护所有的传输连接。然而,每个连接都会占用系统的CPU,内存等硬件资源。因为TCP有确认机制、三次握手机制,这些也导致TCP容易被利用,实现DOS、DDOS、CC等攻击。
UDP优点:快,比TCP稍安全
UDP没有TCP拥有的各种机制,是一种无状态的传输协议,所以传输数据非常快,没有TCP的这些机制,被攻击利用的机会就少一些,但是也无法避免被攻击。
UDP缺点:不可靠,不稳定
因为没有TCP的这些机制,UDP在传输数据时,如果网络质量不好,就会很容易丢包,造成数据的缺失。
11.3、TCP UDP适用场景
TCP:传输一些对信号完整性,信号质量有要求的信息。
UDP:对网络通讯质量要求不高时,要求网络通讯速度要快的场景。
11.4、tcp 怎样保证数据正确性
- 差错控制:发送的数据包的二进制相加然后取反,检测数据在传输过程中的任何变化,如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。编号 + 排序 TCP 给发送的每一个包进行编号,接收方对数据包进行排序,把有序数据传送给应用层 确认 + 超时重传的机制 当 TCP 发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段。
- 流量控制:TCP 连接的每一方都有固定大小的缓冲空间,TCP 的接收端只允许发送端发送接收端缓存区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议。
- 拥塞控制:当网络拥塞时,减少数据的发送。发送方有拥塞窗口,发送数据前比对接收方发过来的接收窗口,取两者的最小值---慢启动、拥塞避免、拥塞发送、快速恢复
12、三次握手,服务端和客户端,分别发生在哪个函数中
客户端:connect
服务端:listen之后、accept之前,被动实现的。accept会从全连接队列中取出一个
节点(TCP控制块),然后为该节点分配一个socket
相关文章:
网络编程常见问题
1、TCP状态迁移图 2、TCP三次握手过程 2.1、握手流程 1、TCP服务器进程先创建传输控制块TCB,时刻准备接受客户进程的连接请求,此时服务器就进入了LISTEN(监听)状态; 2、TCP客户进程也是先创建传输控制块TCBÿ…...
回调函数的使用详解
实际工作中,经常使用回调函数。用来实现触发等机制,也是基于一些已开发好的底层平台,开发上层应用的常用方法。下面对回调函数做一个详细的解释。 目录 1. 简单的回调函数实例 2. C11,使用function<>的写法 3. 注册函数 …...
<电力行业> - 《第8课:输电(一)》
1 输电环节的意义 电能的传输,是电力系统整体功能的重要组成环节。发电厂与电力负荷中心通常都位于不同地区。在水力、煤炭等一次能源资源条件适宜的地点建立发电厂,通过输电可以将电能输送到远离发电厂的负荷中心,使电能的开发和利用超越地…...
【python学习】 __pycache__ 文件是什么
__pycache__文件是Python中的一个特殊目录,主要用于存储已编译的字节码文件(.pyc文件)。以下是关于__pycache__文件的详细解释: 作用:当Python解释器执行一个模块时,它会首先检查是否存在对应的.pyc文件。…...
论文阅读_基本于文本嵌入的信息提取
英文名:Embedding-based Retrieval with LLM for Effective Agriculture Information Extracting from Unstructured Data 中文名:基于嵌入的检索,LLM 从非结构化数据中提取有效的农业信息 地址: https://arxiv.org/abs/2308.03107 时间&…...
kafka学习笔记08
Springboot项目整合spring-kafka依赖包配置 有这种方式,就是可以是把之前test里的配置在这写上,用Bean注解上。 现在来介绍第二种方式: 1.添加kafka依赖: 2.添加kafka配置方式: 编写代码发送消息: 测试: …...
Flask的 preprocess_request
理解 Flask 类似框架中的 preprocess_request 方法 在 Flask 类似的 web 框架中,preprocess_request 方法是一个关键组件。它在请求被分派之前调用,用于执行一些预处理操作。让我们一步一步来理解这个方法的工作原理。 1. 方法概述 首先,我…...
重温react-05(类组件生命周期和性能优化)
类组件的生命周期 import React, { Component } from reactexport default class learnReact05 extends Component {state {number: 1}render() {return (<div>{this.state.number}</div>)}// 一般将请求的方法,放在这个生命周期componentDidMount() {setInterva…...
RHCE四---web服务器的高级优化方案
一、Web服务器(2) 基于https协议的静态网站 概念解释 HTTPS(全称:Hyper Text Transfer Protocol over Secure Socket Layer 或 Hypertext TransferProtocol Secure,超文本传输安全协议),是以…...
Pytest集成Allure生成测试报告
# 运行并输出报告在Report文件夹下 查看生成的allure报告 1. 生成allure报告:pycharm terminal中输入命令:产生报告文件夹 pytest -s --alluredir../report 2. pycharm terminal中输入命令:查看生成的allure报告 allure serve ../report …...
SpringBoot 参数校验
参数校验 引入springvalidation依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId> </dependency>参数前添加Pattern public Result registry(Pattern(regexp &qu…...
【Arduino】实验使用ESP32控制可编程继电器制作跑马灯(图文)
今天小飞鱼实验使用ESP控制继电器,为了更好的掌握继电器的使用方法这里实验做了一个跑马灯的效果。 这里用到的可编程继电器,起始原理并不复杂,同样需要ESP32控制针脚输出高电平或低电平给到继电器,继电器使用这个信号控制一个电…...
islower()方法——判断字符串是否全由小写字母组成
自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 语法参考 islower()方法用于判断字符串是否由小写字母组成。islower()方法的语法格式如下: str.islower() 如果字符串中包含至少一个区…...
发布/订阅模式
实现发布/订阅模式的基本思路是通过一个中介者(发布者)来管理订阅者(监听器),并在特定事件发生时通知所有订阅者执行相应的操作。下面是实现发布/订阅模式的基本思路: 创建发布者对象:首先&…...
K8S Pod常见状态
这是自己所遇到 Pod 常见状态及可能原因,持续更新。 如有其他的错误状态,可私我更新 1. ImagePullBackOff 问题分析: 镜像拉取失败。 可能原因: 可能是网络问题导致,检查Pod所在节点是否能够正常访问网络; 镜…...
Hadoop3:Yarn常用Shell命令
一、查看任务 1、查看所有任务 yarn application -list2、根据状态查看任务 语法 yarn application -list -appStates (所有状态:ALL、NEW、NEW_SAVING、SUBMITTED、ACCEPTED、RUNNING、FINISHED、FAILED、KILLED)例如 yarn application…...
15.数据库简介+MySQl使用+SQL语句
文章目录 数据库简述一.数据库简介DB1.定义:2.DBMS数据库管理系统3.数据库分类 二.MySQL的安装1.安装步骤2.MySQL数据库图形管理工具3.mysql程序常用命令4.MySQL字符集及字符序5.Navicat快捷键操作 三.MySQL数据库基本操作 .........................................表管理一.…...
AI入门系列:工具篇之ChatGPT的优秀的国内替代品
文章目录 一,智谱清言(ChatGLM)1,智谱清言简介2,[智谱清言地址,点我开始用吧](https://chatglm.cn/) 二,Kimi智能助手1,Kimi简介2,[Kimi地址,点我开始用吧](https://kimi.moonshot.c…...
改机软件有哪些?实现一键新机、改串号、改IMEI和手机参数的需求 硬改手机软件,新机环境模拟 设备伪装,一键改机,一键复原
这次针对可以直接开端口修改参数的机型做一些工具解析 前面接触合作过很多工作室。其中很多工作室对于各自软件的跳验证有各自的需求。 一个机型各项参数一般有IMEI WiFi 蓝牙 sn psb ESN等等。 针对这些参数的修改首先要明白各自软件检测的具体是哪些参数来验证。 对于常用…...
如何快速使用JNI
文章目录 1_JNI是什么?2_使用3_扩展 1_JNI是什么? JNI 是Java Native Interface的缩写,通过JNI,允许Java代码与其他语言(通常是C或C)编写的本地应用程序或库进行交互。简而言之就是,Java可以通…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅!
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅! 🌱 前言:一棵树的浪漫,从数组开始说起 程序员的世界里,数组是最常见的基本结构之一,几乎每种语言、每种算法都少不了它。可你有没有想过,一组看似“线性排列”的有序数组,竟然可以**“长”成一棵平衡的二…...
Qt的学习(二)
1. 创建Hello Word 两种方式,实现helloworld: 1.通过图形化的方式,在界面上创建出一个控件,显示helloworld 2.通过纯代码的方式,通过编写代码,在界面上创建控件, 显示hello world; …...
