当前位置: 首页 > news >正文

Datawhale机器学习day-1

赛题

        在当今科技日新月异的时代,人工智能(AI)技术正以前所未有的深度和广度渗透到科研领域,特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例,它是一种三元复合物由目标蛋白配体、linker、E3连接酶配体组成,靶向降解目标蛋白质。本次大赛聚焦于运用先进的人工智能算法预测其降解效能,旨在激发参赛者创新思维,推动AI技术与化学生物学的深度融合,进一步提升药物研发效率与成功率,为人类健康事业贡献智慧力量。通过此次大赛,我们期待见证并孵化出更多精准、高效的分子性质预测模型,共同开启药物发现的新纪元。

赛题分析

【训练分子性质分类预测模型】

运用深度学习、强化学习或更加优秀人工智能的方法预测PROTACs的降解能力,

分类为 降解能力较差/降解能力好 两种结论

评价指标

本次竞赛的评价标准采用f1_score,分数越高,效果越好

处理流程

     在解决机器学习问题时,一般会遵循以下流程:   

思考:这里为什么选择机器学习算法?为什么不考虑深度学习?

        在许多机器学习问题中,特征工程的重要性不容忽视。如果特征工程能够充分捕捉数据的关键特征,那么机器学习算法也能够表现很好。深度学习在某种程度上可以自动学习特征,但对于特定问题,手动设计特征可能会更有效。

思考:这里从逻辑回归和决策树中选择,哪一个模型更加合适?

  • 决策树能够处理非线性关系,并且可以自动捕获特征之间的交互作用。

  • 它可以生成可解释的规则,有助于理解模型如何做出决策。

  • 决策树能够处理不同类型的特征,包括分类和数值型。

代码:

# 1. 导入需要用到的相关库
# 导入 pandas 库,用于数据处理和分析
import pandas as pd
# 导入 numpy 库,用于科学计算和多维数组操作
import numpy as np
# 从 lightgbm 模块中导入 LGBMClassifier 类
from lightgbm import LGBMClassifier# 2. 读取训练集和测试集
# 使用 read_excel() 函数从文件中读取训练集数据,文件名为 'traindata-new.xlsx'
train = pd.read_excel('./data/data280993/traindata-new.xlsx')
# 使用 read_excel() 函数从文件中读取测试集数据,文件名为 'testdata-new.xlsx'
test = pd.read_excel('./data/data280993/testdata-new.xlsx')# 3 特征工程
# 3.1 test数据不包含 DC50 (nM) 和 Dmax (%),将train数据中的DC50 (nM) 和 Dmax (%)删除
train = train.drop(['DC50 (nM)', 'Dmax (%)'], axis=1)# 3.2 将object类型的数据进行目标编码处理
for col in train.columns[2:]:if train[col].dtype == object or test[col].dtype == object:train[col] = train[col].isnull()test[col] = test[col].isnull()# 4. 加载决策树模型进行训练
model = LGBMClassifier(verbosity=-1)
model.fit(train.iloc[:, 2:].values, train['Label'])
pred = model.predict(test.iloc[:, 1:].values, )# 5. 保存结果文件到本地
pd.DataFrame({'uuid': test['uuid'],'Label': pred}
).to_csv('submit.csv', index=None)

处理流程

  1. 导入库:首先,导入需要用到的库,包括 pandas(用于数据处理和分析)和 LGBMClassifier(决策树分类器)等。

  2. 读取数据:代码通过使用 pd.read_excel 函数从文件中读取训练集和测试集数据,并将其存储在 traindata-new.xlsxtestdata-new.xlsx 两个数据框中。

  3. 特征工程

- test数据不包含 DC50 (nM) Dmax (%),将train数据中的 DC50 (nM) Dmax (%)删除。

        4.LGB树模型训练和预测

- 创建了一个 LGBMClassifier 的实例,即LGB分类器。

- 使用 fit 函数对训练集中的特征和目标进行拟合,训练了决策树模型。

- 对测试集使用已训练的模型进行预测,得到预测结果。

- 将预测结果和相应的 uuid 组成一个DataFrame,并将其保存到 submit.csv 文件中。

相关文章:

Datawhale机器学习day-1

赛题 在当今科技日新月异的时代,人工智能(AI)技术正以前所未有的深度和广度渗透到科研领域,特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例,它是…...

业务模型扩展字段存储

构建业务模型时,通常模型会设置扩展信息,存储上一般使用JSON格式存储到db中。JSON虽然有较好的扩展性,但并没有结构化存储的类型和非空等约束,且强依赖代码中写入/读取时进行序列化/反序列化操作, 当扩展信息结构简单且…...

50+k8s常用命令,助你成为k8s大牛!

Kubernetes是一个强大的容器编排平台,不管是运维、开发还是测试或多或少都会接触到,熟练的掌握k8s可大大提高工作效率和强化自身技能。 集群管理 1. 查看集群节点状态: kubectl get nodes2. 查看集群资源使用情况: kubectl top nodes3. 查看集群信息…...

002-基于Sklearn的机器学习入门:回归分析(上)

本节及后续章节将介绍机器学习中的几种经典回归算法,所选方法都在Sklearn库中聚类模块有具体实现。本节为上篇,将介绍基础的线性回归方法,包括线性回归、逻辑回归、多项式回归和岭回归等。 2.1 回归分析概述 回归(Regression&…...

python实现网页自动化(自动登录需要验证的网页)

引言: python作为实现网页自动化的一个重要工具,其强大的各种封装的库使得程序运行更加简洁,只需要下载相应的库,然后调用库中的函数就可以简便的实现我们想要的网页相关操作。 正文: 我的前几篇文章写了关于初学爬虫中比较容易上手的功能,例如爬取静态网页的数据、动…...

ctfshow-web入门-命令执行(web71-web74)

目录 1、web71 2、web72 3、web73 4、web74 1、web71 像上一题那样扫描但是输出全是问号 查看提示:我们可以结合 exit() 函数执行php代码让后面的匹配缓冲区不执行直接退出。 payload: cvar_export(scandir(/));exit(); 同理读取 flag.txt cinclud…...

一体化导航的优点及应用领域

一体化导航,作为现代导航技术的重要发展方向,正日益展现出其独特的魅力和广泛的应用前景。这种导航方式将多种导航技术、信息系统以及数据处理方法集成于一个统一的平台上,为用户提供高效、准确、便捷的导航服务。 一体化导航的核心在于其高度…...

“吃饭大学”!中国大学食堂排行TOP10(含西电)

同学们们,考研择校考虑的因素除了学术,地理位置等方面,你们还会考虑哪些因素呢?小研作为一个吃货,必定会考虑的一个因素当然是大学的食堂美食啊~ 那中国超级好吃的大学食堂在哪?一起来看看有没有你的目标院…...

使用 Mybatis 时,调用 DAO接口时是怎么调用到 SQL 的?

Mybatis 是一个流行的 Java 持久层框架,它提供了一种半自动的 SQL 映射方式,允许开发者在 Java 代码中以一种更加直观和灵活的方式来操作数据库。当你使用 Mybatis 调用 DAO 接口时,背后的工作流程大致如下: 接口定义:…...

微信小程序毕业设计-微信食堂线上订餐系统项目开发实战(附源码+论文)

大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:微信小程序毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计…...

昂首资本实例使用价格行为策略,交易翻倍一点都不难

交易翻倍难吗?当Anzo Capital昂首资本使用价格行为策略进行交易时,发现一点都不难,以下是使用价格行为策略的实例分享: 1. 在初次交易信号出现时,推荐在1.00429价位入场,将止损设于1.04399,止盈…...

20240701 每日AI必读资讯

🏫AI真炼丹:整整14天,无需人类参与 - 英矽智能推出全球首个AI参与决策的生物学实验室,实现了14天内完成靶点发现和验证的全自动化闭环实验。 - 该实验室由PandaOmics平台驱动,集成多种预测模型和海量数据&#xff0…...

GPT-5 一年半后发布,对此你有何期待?

IT之家6月22日消息,在美国达特茅斯工程学院周四公布的采访中,OpenAI首席技术官米拉穆拉蒂被问及GPT-5是否会在明年发布,给出了肯定答案并表示将在一年半后发布。此外,穆拉蒂在采访中还把GPT-4到GPT-5的飞跃描述为高中生到博士生的…...

Redis学习——Redisson 分布式锁集成及其简单使用

文章目录 引言1. Redisson概述1.1 Redisson的基本概念1.2 Redisson的主要功能1.3 Redisson的优点 2. 开发环境3. Redisson的安装与配置3.1 添加依赖3.2 配置Redisson 4. 使用Redisson4.1 可重入锁4.1.1 可重入锁的概念4.1.2 可重入锁的实现原理4.1.3 简单使用锁的获取和释放 4.…...

08 - matlab m_map地学绘图工具基础函数 - 绘制线、图例、添加文字注释等函数

08 - matlab m_map地学绘图工具基础函数 - 绘制线、图例、添加文字注释等函数 0. 引言1. 关于m_line2. 关于m_quiver3. 关于m_text4. 关于m_plot5. 结语 0. 引言 本篇介绍下m_map中添加绘制基础线(m_line、m_plot)、绘制箭头(m_quiver&#x…...

Luminar Neo 1.20.0 (macOS Universal) - 创新 AI 图像编辑器

Luminar Neo 1.20.0 (macOS Universal) - 创新 AI 图像编辑器 利用尖端的人工智能生成技术,轻松增强照片效果 请访问原文链接:https://sysin.org/blog/luminar-neo/,查看最新版。原创作品,转载请保留出处。 作者主页&#xff1…...

谈谈Flink消费kafka的偏移量

offset配置: flinkKafkaConsumer.setStartFromEarliest():从topic的最早offset位置开始处理数据,如果kafka中保存有消费者组的消费位置将被忽略。 flinkKafkaConsumer.setStartFromLatest():从topic的最新offset位置开始处理数据,如果kafka中保存有消费…...

MySQL 高级SQL高级语句(二)

一.CREATE VIEW 视图 可以被当作是虚拟表或存储查询。 视图跟表格的不同是,表格中有实际储存数据记录,而视图是建立在表格之上的一个架构,它本身并不实际储存数据记录。 临时表在用户退出或同数据库的连接断开后就自动消失了,而…...

MySQL之高可用性(四)

高可用性 故障转移和故障恢复 冗余是很好的技术,但实际上只有在遇到故障需要恢复时才会用到。(见鬼,这可以用备份来实现)。冗余一点儿也不会增加可用性或减少宕机。在故障转移的过程中,高可用性是建立在冗余的基础上。当有一个组件失效&…...

招聘智能管理系统设计

设计一个招聘智能管理系统,需要从多个维度考虑,包括但不限于用户界面、功能模块、数据安全、算法模型等。以下是一个基本的设计框架: 1. 系统架构: 前端:提供直观的用户界面,包括应聘者和招聘者的登录/注册…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...