Datawhale机器学习day-1
赛题
在当今科技日新月异的时代,人工智能(AI)技术正以前所未有的深度和广度渗透到科研领域,特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例,它是一种三元复合物由目标蛋白配体、linker、E3连接酶配体组成,靶向降解目标蛋白质。本次大赛聚焦于运用先进的人工智能算法预测其降解效能,旨在激发参赛者创新思维,推动AI技术与化学生物学的深度融合,进一步提升药物研发效率与成功率,为人类健康事业贡献智慧力量。通过此次大赛,我们期待见证并孵化出更多精准、高效的分子性质预测模型,共同开启药物发现的新纪元。
赛题分析
【训练分子性质分类预测模型】
运用深度学习、强化学习或更加优秀人工智能的方法预测PROTACs的降解能力,
分类为 降解能力较差/降解能力好 两种结论
评价指标
本次竞赛的评价标准采用f1_score,分数越高,效果越好
处理流程
在解决机器学习问题时,一般会遵循以下流程:
思考:这里为什么选择机器学习算法?为什么不考虑深度学习?
在许多机器学习问题中,特征工程的重要性不容忽视。如果特征工程能够充分捕捉数据的关键特征,那么机器学习算法也能够表现很好。深度学习在某种程度上可以自动学习特征,但对于特定问题,手动设计特征可能会更有效。
思考:这里从逻辑回归和决策树中选择,哪一个模型更加合适?
-
决策树能够处理非线性关系,并且可以自动捕获特征之间的交互作用。
-
它可以生成可解释的规则,有助于理解模型如何做出决策。
-
决策树能够处理不同类型的特征,包括分类和数值型。
代码:
# 1. 导入需要用到的相关库
# 导入 pandas 库,用于数据处理和分析
import pandas as pd
# 导入 numpy 库,用于科学计算和多维数组操作
import numpy as np
# 从 lightgbm 模块中导入 LGBMClassifier 类
from lightgbm import LGBMClassifier# 2. 读取训练集和测试集
# 使用 read_excel() 函数从文件中读取训练集数据,文件名为 'traindata-new.xlsx'
train = pd.read_excel('./data/data280993/traindata-new.xlsx')
# 使用 read_excel() 函数从文件中读取测试集数据,文件名为 'testdata-new.xlsx'
test = pd.read_excel('./data/data280993/testdata-new.xlsx')# 3 特征工程
# 3.1 test数据不包含 DC50 (nM) 和 Dmax (%),将train数据中的DC50 (nM) 和 Dmax (%)删除
train = train.drop(['DC50 (nM)', 'Dmax (%)'], axis=1)# 3.2 将object类型的数据进行目标编码处理
for col in train.columns[2:]:if train[col].dtype == object or test[col].dtype == object:train[col] = train[col].isnull()test[col] = test[col].isnull()# 4. 加载决策树模型进行训练
model = LGBMClassifier(verbosity=-1)
model.fit(train.iloc[:, 2:].values, train['Label'])
pred = model.predict(test.iloc[:, 1:].values, )# 5. 保存结果文件到本地
pd.DataFrame({'uuid': test['uuid'],'Label': pred}
).to_csv('submit.csv', index=None)
处理流程
-
导入库:首先,导入需要用到的库,包括
pandas
(用于数据处理和分析)和LGBMClassifier
(决策树分类器)等。 -
读取数据:代码通过使用
pd.read_excel
函数从文件中读取训练集和测试集数据,并将其存储在traindata-new.xlsx
和testdata-new.xlsx
两个数据框中。 -
特征工程:
- test
数据不包含 DC50 (nM)
和 Dmax (%)
,将train
数据中的 DC50 (nM)
和 Dmax (%)
删除。
4.LGB树模型训练和预测:
- 创建了一个 LGBMClassifier
的实例,即LGB分类器。
- 使用 fit
函数对训练集中的特征和目标进行拟合,训练了决策树模型。
- 对测试集使用已训练的模型进行预测,得到预测结果。
- 将预测结果和相应的 uuid
组成一个DataFrame,并将其保存到 submit.csv
文件中。
相关文章:

Datawhale机器学习day-1
赛题 在当今科技日新月异的时代,人工智能(AI)技术正以前所未有的深度和广度渗透到科研领域,特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例,它是…...

业务模型扩展字段存储
构建业务模型时,通常模型会设置扩展信息,存储上一般使用JSON格式存储到db中。JSON虽然有较好的扩展性,但并没有结构化存储的类型和非空等约束,且强依赖代码中写入/读取时进行序列化/反序列化操作, 当扩展信息结构简单且…...

50+k8s常用命令,助你成为k8s大牛!
Kubernetes是一个强大的容器编排平台,不管是运维、开发还是测试或多或少都会接触到,熟练的掌握k8s可大大提高工作效率和强化自身技能。 集群管理 1. 查看集群节点状态: kubectl get nodes2. 查看集群资源使用情况: kubectl top nodes3. 查看集群信息…...

002-基于Sklearn的机器学习入门:回归分析(上)
本节及后续章节将介绍机器学习中的几种经典回归算法,所选方法都在Sklearn库中聚类模块有具体实现。本节为上篇,将介绍基础的线性回归方法,包括线性回归、逻辑回归、多项式回归和岭回归等。 2.1 回归分析概述 回归(Regression&…...

python实现网页自动化(自动登录需要验证的网页)
引言: python作为实现网页自动化的一个重要工具,其强大的各种封装的库使得程序运行更加简洁,只需要下载相应的库,然后调用库中的函数就可以简便的实现我们想要的网页相关操作。 正文: 我的前几篇文章写了关于初学爬虫中比较容易上手的功能,例如爬取静态网页的数据、动…...

ctfshow-web入门-命令执行(web71-web74)
目录 1、web71 2、web72 3、web73 4、web74 1、web71 像上一题那样扫描但是输出全是问号 查看提示:我们可以结合 exit() 函数执行php代码让后面的匹配缓冲区不执行直接退出。 payload: cvar_export(scandir(/));exit(); 同理读取 flag.txt cinclud…...

一体化导航的优点及应用领域
一体化导航,作为现代导航技术的重要发展方向,正日益展现出其独特的魅力和广泛的应用前景。这种导航方式将多种导航技术、信息系统以及数据处理方法集成于一个统一的平台上,为用户提供高效、准确、便捷的导航服务。 一体化导航的核心在于其高度…...

“吃饭大学”!中国大学食堂排行TOP10(含西电)
同学们们,考研择校考虑的因素除了学术,地理位置等方面,你们还会考虑哪些因素呢?小研作为一个吃货,必定会考虑的一个因素当然是大学的食堂美食啊~ 那中国超级好吃的大学食堂在哪?一起来看看有没有你的目标院…...
使用 Mybatis 时,调用 DAO接口时是怎么调用到 SQL 的?
Mybatis 是一个流行的 Java 持久层框架,它提供了一种半自动的 SQL 映射方式,允许开发者在 Java 代码中以一种更加直观和灵活的方式来操作数据库。当你使用 Mybatis 调用 DAO 接口时,背后的工作流程大致如下: 接口定义:…...

微信小程序毕业设计-微信食堂线上订餐系统项目开发实战(附源码+论文)
大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:微信小程序毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计…...

昂首资本实例使用价格行为策略,交易翻倍一点都不难
交易翻倍难吗?当Anzo Capital昂首资本使用价格行为策略进行交易时,发现一点都不难,以下是使用价格行为策略的实例分享: 1. 在初次交易信号出现时,推荐在1.00429价位入场,将止损设于1.04399,止盈…...

20240701 每日AI必读资讯
🏫AI真炼丹:整整14天,无需人类参与 - 英矽智能推出全球首个AI参与决策的生物学实验室,实现了14天内完成靶点发现和验证的全自动化闭环实验。 - 该实验室由PandaOmics平台驱动,集成多种预测模型和海量数据࿰…...

GPT-5 一年半后发布,对此你有何期待?
IT之家6月22日消息,在美国达特茅斯工程学院周四公布的采访中,OpenAI首席技术官米拉穆拉蒂被问及GPT-5是否会在明年发布,给出了肯定答案并表示将在一年半后发布。此外,穆拉蒂在采访中还把GPT-4到GPT-5的飞跃描述为高中生到博士生的…...

Redis学习——Redisson 分布式锁集成及其简单使用
文章目录 引言1. Redisson概述1.1 Redisson的基本概念1.2 Redisson的主要功能1.3 Redisson的优点 2. 开发环境3. Redisson的安装与配置3.1 添加依赖3.2 配置Redisson 4. 使用Redisson4.1 可重入锁4.1.1 可重入锁的概念4.1.2 可重入锁的实现原理4.1.3 简单使用锁的获取和释放 4.…...

08 - matlab m_map地学绘图工具基础函数 - 绘制线、图例、添加文字注释等函数
08 - matlab m_map地学绘图工具基础函数 - 绘制线、图例、添加文字注释等函数 0. 引言1. 关于m_line2. 关于m_quiver3. 关于m_text4. 关于m_plot5. 结语 0. 引言 本篇介绍下m_map中添加绘制基础线(m_line、m_plot)、绘制箭头(m_quiver&#x…...

Luminar Neo 1.20.0 (macOS Universal) - 创新 AI 图像编辑器
Luminar Neo 1.20.0 (macOS Universal) - 创新 AI 图像编辑器 利用尖端的人工智能生成技术,轻松增强照片效果 请访问原文链接:https://sysin.org/blog/luminar-neo/,查看最新版。原创作品,转载请保留出处。 作者主页࿱…...

谈谈Flink消费kafka的偏移量
offset配置: flinkKafkaConsumer.setStartFromEarliest():从topic的最早offset位置开始处理数据,如果kafka中保存有消费者组的消费位置将被忽略。 flinkKafkaConsumer.setStartFromLatest():从topic的最新offset位置开始处理数据,如果kafka中保存有消费…...

MySQL 高级SQL高级语句(二)
一.CREATE VIEW 视图 可以被当作是虚拟表或存储查询。 视图跟表格的不同是,表格中有实际储存数据记录,而视图是建立在表格之上的一个架构,它本身并不实际储存数据记录。 临时表在用户退出或同数据库的连接断开后就自动消失了,而…...

MySQL之高可用性(四)
高可用性 故障转移和故障恢复 冗余是很好的技术,但实际上只有在遇到故障需要恢复时才会用到。(见鬼,这可以用备份来实现)。冗余一点儿也不会增加可用性或减少宕机。在故障转移的过程中,高可用性是建立在冗余的基础上。当有一个组件失效&…...
招聘智能管理系统设计
设计一个招聘智能管理系统,需要从多个维度考虑,包括但不限于用户界面、功能模块、数据安全、算法模型等。以下是一个基本的设计框架: 1. 系统架构: 前端:提供直观的用户界面,包括应聘者和招聘者的登录/注册…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)
题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...

Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

springboot 日志类切面,接口成功记录日志,失败不记录
springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...