01.总览
目录
- 简介
- Course 1: Natural Language Processing with Classification and Vector Space
- Week 1: Sentiment Analysis with Logistic Regression
- Week 2: Sentiment Analysis with Naïve Bayes
- Week 3: Vector Space Models
- Week 4: Machine Translation and Document Search
- Course 2: Natural Language Processing with Probabilistic Models
- Week 1: Auto-correct
- Week 2: Part-of-Speech (POS) Tagging and Hidden Markov Models
- Week 3: Auto-complete and Language Models
- Week 4: Word Embeddings with Neural Networks
- Course 3: Natural Language Processing with Sequence Models
- Week 1: Neural Network for Sentiment Analysis
- Week 2: Recurrent Neural Networks for Language Modeling
- Week 3: LSTMs and Named Entity Recognition (NER)
- Week 4: Siamese Networks
- Course 4: Natural Language Processing with Attention Models
- Week 1: Neural Machine Translation with Attention models
- Week 2: Text Summarization with Transformer models
- Week 3: Question-Answering
- Week 4: Chatbots with Reformer models
截图多来自:
https://www.deeplearning.ai/courses/natural-language-processing-specialization/
简介
这套课程来自于deeplearning.ai,课程名称为:Natural Language Processing Specialization,NG站台,一共四课,每课分别又分四个小节,以下内容翻译至官网。
B站亦有视频:https://www.bilibili.com/video/BV16G41167p1?p=4&vd_source=b328decd6af2d04adbe559355fe73b42
Course 1: Natural Language Processing with Classification and Vector Space
主要内容
a) 使用逻辑回归和朴素贝叶斯对推文进行情感分析;
b) 使用向量空间模型发现词与词之间的关系,并使用 PCA 降低向量空间的维度和可视化这些关系;
c) 利用预先计算的单词嵌入和对位置敏感的哈希算法,编写一个简单的英法互译算法,通过近似 K 近邻搜索将单词联系起来。
Week 1: Sentiment Analysis with Logistic Regression
第1周 使用逻辑回归进行情感分析
学习如何将文本特征提取为数字向量,然后使用逻辑回归为推文建立二元分类器。
Week 2: Sentiment Analysis with Naïve Bayes
第 2 周 使用朴素贝叶斯进行情感分析
了解贝叶斯条件概率规则背后的理论,然后将其应用于构建自己的 Naive Bayes 推文分类器。
Week 3: Vector Space Models
第 3 周 矢量空间模型
矢量空间模型可以捕捉词与词之间的语义和关系。您将学习如何创建单词向量来捕捉单词之间的依赖关系,然后使用 PCA 在两个维度上可视化它们之间的关系。
Week 4: Machine Translation and Document Search
第 4 周 机器翻译和文档搜索
学习如何转换单词向量,并使用对位置敏感的哈希算法将其分配到子集,以执行机器翻译和文档搜索。
Course 2: Natural Language Processing with Probabilistic Models
主要内容:
a) 利用最小编辑距离和动态编程创建一个简单的自动更正算法;
b) 应用维特比算法进行语音部分(POS)标记;
c) 使用 N-gram 语言模型编写更好的自动完成算法;
d) 编写自己的 Word2Vec 模型,该模型使用神经网络,使用连续词袋模型计算词嵌入。
Week 1: Auto-correct
第 1 周 自动更正
了解自动更正、最小编辑距离和动态编程,然后建立自己的拼写检查程序来纠正拼写错误的单词。
Week 2: Part-of-Speech (POS) Tagging and Hidden Markov Models
第 2 周 语音部分(POS)标记和隐马尔可夫模型
了解马尔可夫链和隐马尔可夫模型,然后使用它们为《华尔街日报》文本语料库创建语音部分标签。
Week 3: Auto-complete and Language Models
第 3 周 自动完成和语言模型
通过计算序列概率了解 N-gram 语言模型的工作原理,然后使用 Twitter 文本语料库建立自己的自动完成语言模型。
Week 4: Word Embeddings with Neural Networks
第4周 使用神经网络进行词嵌入
了解词嵌入如何承载词的语义,使其在 NLP 任务中发挥更大作用。然后建立自己的连续词袋模型,从莎士比亚文本中创建词嵌入。
Course 3: Natural Language Processing with Sequence Models
主要内容:
a) 利用 GLoVe 词嵌入训练神经网络,对推文进行情感分析;
b) 使用门控递归单元(GRU)语言模型生成合成莎士比亚文本;
c) 使用具有线性层的 LSTM 训练递归神经网络来执行命名实体识别(NER);
d) 使用孪生LSTM 模型来比较语料库中的问题,并识别那些措辞不同但含义相同的问题。
Week 1: Neural Network for Sentiment Analysis
第 1 周 情感分析神经网络
了解用于深度学习的神经网络,然后构建一个复杂的推文分类器,利用深度神经网络将推文归入正面或负面情感类别。
Week 2: Recurrent Neural Networks for Language Modeling
第 2 周 用于语言建模的递归神经网络
了解传统语言模型的局限性,看看 RNN 和 GRU 如何利用序列数据进行文本预测。然后在莎士比亚文本数据上使用简单的 RNN 建立自己的下一个单词生成器。
Week 3: LSTMs and Named Entity Recognition (NER)
第 3 周 LSTM 和命名实体识别(NER)
了解长短时记忆单元(LSTM)如何解决梯度消失问题,以及命名实体识别系统如何从文本中快速提取重要信息。然后使用 LSTM 和来自 Kaggle 的数据构建自己的命名实体识别系统。
Week 4: Siamese Networks
第 4 周 孪生网络
了解孪生网络,这是一种特殊的神经网络,由两个最终合并的相同网络组成,然后构建自己的孪生网络,在 Quora 数据集中识别重复的问题。
Course 4: Natural Language Processing with Attention Models
主要内容:
a) 使用编码器-解码器注意力模型将完整的英语句子翻译成德语;
b) 建立一个 Transformer 模型来总结文本;
c) 使用 T5 和 BERT 模型进行问题解答;
d) 使用 Reformer 模型建立聊天机器人。
Week 1: Neural Machine Translation with Attention models
第 1 周 使用注意力模型进行神经机器翻译
了解传统 seq2seq 模型的一些缺点,以及如何通过添加注意力机制来解决这些问题,然后建立一个带有注意力的神经机器翻译模型,将英语句子翻译成德语。
Week 2: Text Summarization with Transformer models
第 2 周 使用转换器模型进行文本总结
将 RNN 和其他顺序模型与更现代的 Transformer 架构进行比较,然后创建一个生成文本摘要的工具。
Week 3: Question-Answering
第 3 周 问题解答
利用 T5 和 BERT 等最先进的模型探索迁移学习,然后建立一个可以回答问题的模型。
Week 4: Chatbots with Reformer models
第4周:聊天机器人 使用 Reformer 模型的聊天机器人
研究 Transformer 模型面临的一些独特挑战及其解决方案,然后使用 Reformer 模型构建一个聊天机器人。
相关文章:
01.总览
目录 简介Course 1: Natural Language Processing with Classification and Vector SpaceWeek 1: Sentiment Analysis with Logistic RegressionWeek 2: Sentiment Analysis with Nave BayesWeek 3: Vector Space ModelsWeek 4: Machine Translation and Document Search Cours…...
Linux换源
前言 安装完Linux系统,尽量更换源以提高安装软件的速度。 步骤 备份原始源列表sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak修改sources.list sudo vim /etc/apt/sources.list将内容替换成对应的源 **PS:清华源地址:https:…...
【高考志愿】 化学工程与技术
目录 一、专业概述 二、就业前景 三、就业方向 四、报考注意 五、专业发展与深造 六、化学工程与技术专业排名 七、总结 一、专业概述 化学工程与技术专业,这是一门深具挑战与机遇的综合性学科。它融合了工程技术的实用性和化学原理的严谨性,为毕…...
2024上半年网络与数据安全法规政策、国标、报告合集
事关大局,我国数据安全立法体系已基本形成并逐步细化。数据基础制度建设事关国家发展和安全大局,数据安全治理贯穿构建数据基础制度体系全过程。随着我国数字经济建设进程加快,数据安全立法实现由点到面、由面到体加速构建,目前已…...
基于SpringBoot扶农助农政策管理系统设计和实现(源码+LW+调试文档+讲解等)
💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟 感兴趣的可以先收藏起来,…...
淘宝商铺电话怎么获取?使用爬虫工具采集
访问淘宝商铺是一个合法的行为,你可以使用爬虫工具来提取淘宝商铺的信息。下面是一个基本的Python程序示例,用于使用爬虫工具访问淘宝商铺: import requestsdef get_store_info(store_id):url fhttps://shop{id}.taobao.comresponse reque…...
ModStart:开源免费的PHP企业网站开发建设管理系统
大家好!今天我要给大家介绍一款超级强大的开源工具——ModStart,它基于Laravel框架,是PHP企业网站开发建设的绝佳选择! 为什么选择ModStart? 模块化设计:ModStart采用模块化设计,内置了众多基…...
npm安装依赖报错——npm ERR gyp verb cli的解决方法
1. 问题描述 1.1 npm安装依赖报错——npm ERR! gyp verb cli npm MARN deprecated axiosQ0.18.1: critical security vuLnerability fixed in v0.21.1. For more information, npm WARN deprecated svg001.3.2: This SVGO version is no Longer supported. upgrade to v2.x.x …...
公网环境使用Potplayer远程访问家中群晖NAS搭建的WebDAV听歌看电影
文章目录 前言1 使用环境要求:2 配置webdav3 测试局域网使用potplayer访问webdav4 内网穿透,映射至公网5 使用固定地址在potplayer访问webdav 前言 本文主要介绍如何在Windows设备使用potplayer播放器远程访问本地局域网的群晖NAS中的影视资源ÿ…...
Forecasting from LiDAR via Future Object Detection
Forecasting from LiDAR via Future Object Detection 基础信息 论文:cvpr2022paper https://openaccess.thecvf.com/content/CVPR2022/papers/Peri_Forecasting_From_LiDAR_via_Future_Object_Detection_CVPR_2022_paper.pdfgithub:https://github.co…...
【unity笔记】五、UI面板TextMeshPro 添加中文字体
Unity 中 TextMeshPro不支持中文字体,下面为解决方法: 准备字体文件,从Windows系统文件的Fonts文件夹里拖一个.ttf文件(C盘 > Windows > Fonts ) 准备字库文件,新建一个文本文件,命名为“字库”&…...
如何在Windows 11上设置默认麦克风和相机?这里有详细步骤
如果你的Windows 11计算机上连接了多个麦克风或网络摄像头,并且希望自动使用特定设备,而不必每次都在设置中乱动,则必须将首选设备设置为默认设备。我们将向你展示如何做到这一点。 如何在Windows 11上更改默认麦克风 有两种方法可以将麦克…...
Flutter循序渐进==>数据结构(列表、映射和集合)和错误处理
导言 填鸭似的教育确实不行,我高中时学过集合,不知道有什么用,毫无兴趣,等到我学了一门编程语言后,才发现集合真的很有用;可以去重,可以看你有我没有的,可以看我有你没有的…...
泛微E9开发 限制明细表列的值重复
限制明细表列的值重复 1、需求说明2、实现方法3、扩展知识点3.1 修改单个字段值(不支持附件类型)3.1.1 格式3.1.2 参数3.1.3 案例 3.2 获取明细行所有行标示3.2.1 格式3.2.2 参数说明 1、需求说明 限制明细表的“类型”字段,在同一个流程表单…...
magicapi导出excel
参考:Hutool参考文档 response模块 | magic-api import response;import java.util.ArrayList; import java.util.LinkedHashMap; import java.util.List; import java.util.Map;import cn.hutool.core.collection.CollUtil; import cn.hutool.core.date.DateUtil; …...
【秋招突围】2024届秋招笔试-科大讯飞笔试题-03-三语言题解(Java/Cpp/Python)
🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系计划跟新各公司春秋招的笔试题 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📧 清隆这边…...
springboot是否可以代替spring
Spring Boot不能直接代替Spring,但它是Spring框架的一个扩展和增强,提供了更加便捷和高效的开发体验。以下是关于Spring Boot和Spring关系的详细解释: Spring框架: Spring是一个广泛应用的开源Java框架,提供了一系列模…...
基于SpringBoot的CSGO赛事管理系统
您好!我是专注于计算机技术研究的码农小野。如果您对CSGO赛事管理系统感兴趣或有相关开发需求,欢迎随时联系我。 开发语言:Java 数据库:MySQL 技术:SpringBoot框架,Java技术 工具:Eclipse&a…...
使用 Selenium 实现自动化分页处理与信息提取
目录 项目背景与目标Selenium 环境配置分页处理的基本思路简化后的代码示例总结 正文 1. 项目背景与目标 在进行 Web 自动化测试或数据抓取时,处理分页是一个常见的需求。通过 Selenium,我们可以自动化浏览多个分页并提取每页上的信息。本文将介绍如…...
现代信息检索笔记(二)——布尔检索
目录 信息检索概述 IR vs数据库: 结构化vs 非结构化数据 结构化数据 非结构化数据 半结构化数据 传统信息检索VS现代信息检索 布尔检索 倒排索引 一个例子 建立词项(可以是字、词、短语、一句话)-文档的关联矩阵。 关联向量 检索效果的评价 …...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
鸿蒙HarmonyOS 5军旗小游戏实现指南
1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发,采用DevEco Studio实现,包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...
