当前位置: 首页 > news >正文

关于Disruptor监听策略

Disruptor框架提供了多种等待策略,每种策略都有其适用的场景和特点。以下是这些策略的详细介绍及其适用场景:

1. BlockingWaitStrategy

  • 特点
    • 使用锁和条件变量进行线程间通信,线程在等待时会进入阻塞状态,释放CPU资源。
  • 适用场景
    • 适合对延迟要求不高的应用。
    • 系统资源有限,需要最大化CPU利用率,减少不必要的CPU占用。
    • 典型应用:批处理系统、日志处理系统。

2. BusySpinWaitStrategy

  • 特点
    • 不释放CPU资源,线程不断循环等待事件。
  • 适用场景
    • 适合对延迟非常敏感的应用。
    • 系统有充足的CPU资源,并且能够接受高CPU使用率。
    • 典型应用:高频交易系统。

3. LiteBlockingWaitStrategy

  • 特点
    • 类似于BlockingWaitStrategy,但实现更轻量级。
    • 同样使用锁和条件变量。
  • 适用场景
    • 适合需要节省CPU资源但又不希望完全阻塞的应用。
    • 系统资源有限,且对延迟要求适中。
    • 典型应用:一般的企业应用。

4. LiteTimeoutBlockingWaitStrategy

  • 特点
    • 类似于LiteBlockingWaitStrategy,但支持超时等待。
    • 使用锁、条件变量和超时机制。
  • 适用场景
    • 适合需要节省CPU资源且有超时机制需求的应用。
    • 系统资源有限,对延迟要求适中,并希望在等待超时后进行特定处理。
    • 典型应用:网络通信应用,需要在一定时间内收到响应。

5. PhasedBackoffWaitStrategy

  • 特点
    • 结合了多种等待策略,根据不同的条件逐步后退。
    • 支持多阶段等待,包括忙等待、yield和阻塞等待。
  • 适用场景
    • 适合需要灵活应对不同负载条件的应用。
    • 系统资源情况不确定,且需要在不同负载下自动调整等待策略。
    • 典型应用:动态负载的应用系统。

6. SleepingWaitStrategy

  • 特点
    • 线程在等待时短暂休眠,降低CPU占用。
  • 适用场景
    • 适合对延迟要求不高且希望减少CPU占用的应用。
    • 系统资源有限,且不需要高频事件处理。
    • 典型应用:后台任务处理。

7. TimeoutBlockingWaitStrategy

  • 特点
    • 类似于BlockingWaitStrategy,但支持超时等待。
    • 使用锁、条件变量和超时机制。
  • 适用场景
    • 适合需要节省CPU资源且有超时机制需求的应用。
    • 系统资源有限,对延迟要求适中,并希望在等待超时后进行特定处理。
    • 典型应用:超时网络通信、数据处理任务。

8. YieldingWaitStrategy

  • 特点
    • 使用Thread.yield()方法让出CPU资源,允许其他线程运行。
    • 当没有新事件时,线程会进入短暂的休眠状态。
  • 适用场景
    • 适合延迟敏感的应用场景。
    • 系统有足够的CPU资源来处理并发任务,并希望在高吞吐量和低延迟之间取得平衡。
    • 典型应用:实时数据处理系统。

选择策略的综合建议

  • 低延迟,高吞吐量
    • 使用BusySpinWaitStrategyYieldingWaitStrategy
  • 中等延迟,节省资源
    • 使用SleepingWaitStrategyLiteBlockingWaitStrategyPhasedBackoffWaitStrategy
  • 资源有限,低CPU占用
    • 使用BlockingWaitStrategyTimeoutBlockingWaitStrategy

示例代码

使用PhasedBackoffWaitStrategy
Disruptor<Holder> disruptor = new Disruptor<>(new HolderEventFactory(),bufferSize,new ThreadFactoryBuilder().setNameFormat("disruptor-thread-%d").build(),ProducerType.MULTI,PhasedBackoffWaitStrategy.withLock(new BusySpinWaitStrategy(),new BlockingWaitStrategy(),10, TimeUnit.MILLISECONDS)
);

通过理解每种策略的特点和适用场景,可以根据实际需求选择最合适的等待策略,确保系统在高并发情况下既能满足性能要求,又能有效利用系统资源。

相关文章:

关于Disruptor监听策略

Disruptor框架提供了多种等待策略&#xff0c;每种策略都有其适用的场景和特点。以下是这些策略的详细介绍及其适用场景&#xff1a; 1. BlockingWaitStrategy 特点&#xff1a; 使用锁和条件变量进行线程间通信&#xff0c;线程在等待时会进入阻塞状态&#xff0c;释放CPU资…...

大数据面试题之HBase(3)

HBase的预分区 HBase的热点问题 HBase的memstore冲刷条件 HBase的MVCC HBase的大合并与小合并&#xff0c;大合并是如何做的?为什么要大合并 既然HBase底层数据是存储在HDFS上&#xff0c;为什么不直接使用HDFS&#xff0c;而还要用HBase HBase和Phoenix的区别 HBase支…...

c#中赋值、浅拷贝和深拷贝

在 C# 编程中&#xff0c;深拷贝&#xff08;Deep Copy&#xff09;和浅拷贝&#xff08;Shallow Copy&#xff09;是用于复制对象的两种不同方式&#xff0c;它们在处理对象时有着重要的区别和适用场景。 浅拷贝&#xff08;Shallow Copy&#xff09; 浅拷贝是指创建一个新对…...

旧版st7789屏幕模块 没有CS引脚的天坑 已解决!!!

今天解决了天坑一个&#xff0c;大家可能有的人买的是st7789屏幕模块&#xff0c;240x240&#xff0c;1.3寸的 他标注的是老版&#xff0c;没有CS引脚&#xff0c;小崽子长这样&#xff1a; 这熊孩子用很多通用的驱动不吃&#xff0c;死活不显示&#xff0c;网上猛搜&#xff…...

激光粒度分析仪校准步骤详解:提升测量精度的秘诀

在材料科学、环境监测、医药研发等众多领域&#xff0c;激光粒度分析仪以其高精度、高效率的测量性能&#xff0c;成为了不可或缺的测试工具。然而&#xff0c;为了保持其测量结果的准确性和可靠性&#xff0c;定期校准是不可或缺的步骤。 接下来&#xff0c;佰德将为您详细介…...

独一无二的设计模式——单例模式(python实现)

1. 引言 大家好&#xff0c;今天我们来聊聊设计模式中的“独一无二”——单例模式。想象一下&#xff0c;我们在开发一个复杂的软件系统&#xff0c;需要一个全局唯一的配置管理器&#xff0c;或者一个统一的日志记录器&#xff1b;如果每次使用这些功能都要创建新的实例&…...

第二证券:可转债基础知识?想玩可转债一定要搞懂的交易规则!

可转债&#xff0c;全称是“可转化公司债券”&#xff0c;是上市公司为了融资&#xff0c;向社会公众所发行的一种债券&#xff0c;具有股票和债券的双重特点&#xff0c;投资者可以选择按照发行时约定的价格将债券转化成公司一般股票&#xff0c;也可作为债券持有到期后收取本…...

原型模式的实现

1. 引言 1.1 背景 在实际编程中,有时需要频繁创建多个相似但稍有不同的对象。如果采用传统的对象创建方式,容易造成代码冗余,对象重复初始化操作也可能带来大量的的资源消耗(如时间、内存等)。这样不仅降低了灵活性,导致难以适应状态的变化,还降低了代码的可扩展性。 …...

【第二套】华为 2024 年校招-硬件电源岗

1.为了避免 50Hz 的电⽹电压⼲扰放⼤器&#xff0c;应该⽤那种滤波器&#xff1a; A.带阻滤波器 B.带通滤波器 C.低通滤波器 D.⾼通滤波器 2.PID 中的 I 和 D 的作⽤分别是&#xff1f; A、消除静态误差和提⾼动态性能 B、消除静态误差和减⼩调节时间 C、提⾼动态性能和减⼩超调…...

Xilinx FPGA:vivado利用单端RAM/串口传输数据实现自定义私有协议

一、项目要求 实现自定义私有协议&#xff0c;如&#xff1a;pc端产生数据&#xff1a;02 56 38 &#xff0c;“02”代表要发送数据的个数&#xff0c;“56”“38”需要写进RAM中。当按键信号到来时&#xff0c;将“56”“38”读出返回给PC端。 二、信号流向图 三、状态…...

Spark on k8s 源码解析执行流程

Spark on k8s 源码解析执行流程 1.通过spark-submit脚本提交spark程序 在spark-submit脚本里面执行了SparkSubmit类的main方法 2.运行SparkSubmit类的main方法&#xff0c;解析spark参数&#xff0c;调用submit方法 3.在submit方法里调用doRunMain方法&#xff0c;最终调用r…...

粤港联动,北斗高质量国际化发展的重要机遇

今年是香港回归27周年&#xff0c;也是《粤港澳大湾区发展规划纲要》公布5周年&#xff0c;5年来各项政策、平台不断为粤港联动增添新动能。“十四五”时期的粤港澳大湾区&#xff0c;被国家赋予了更重大的使命&#xff0c;国家“十四五”《规划纲要》提出&#xff0c;以京津冀…...

Chrome导出cookie的实战教程

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

视频文字转语音经验笔记

自媒体视频制作的一些小经验&#xff0c;分享给大家。 一、音频部分&#xff1a; 1、文字转语音阐述&#xff1a; 微软语音识别 云希-青年男&#xff0c; 0.5-0.8变速 。注&#xff1a;云泽-中年男&#xff08;不支持长音频录制&#xff09;&#xff0c; 适合郑重场合&#…...

视频融合共享平台LntonCVS统一视频接入平台智慧安防应用方案

安防视频监控平台LntonCVS是一款拥有强大拓展性和灵活部署能力的综合管理平台。它支持多种主流标准协议&#xff0c;包括国标GB28181、RTSP/Onvif、RTMP等&#xff0c;同时兼容各厂家的私有协议和SDK&#xff0c;如海康Ehome、海大宇等。LntonCVS不仅具备传统安防视频监控功能&…...

使用Python绘制动态螺旋线:旋转动画效果

文章目录 引言准备工作前置条件 代码实现与解析导入必要的库初始化Pygame绘制螺旋线函数主循环 完整代码 引言 螺旋线是一个具有美学和数学魅力的图形。通过编程&#xff0c;我们可以轻松创建动态旋转的螺旋线动画。在这篇博客中&#xff0c;我们将使用Python和Pygame库来实现…...

Symfony实战手册:PHP框架的高级应用技巧

引言 Symfony是一个功能强大且广泛应用于PHP应用程序开发的框架&#xff0c;它提供了许多高级特性和工具&#xff0c;可以帮助开发人员更高效地构建和管理复杂的Web应用程序。以下是Symfony框架的几个关键方面及其高级应用技巧&#xff1a; 1. 路由和控制器 Symfony的路由组…...

TOGAF培训什么内容?参加TOGAF培训有什么好处?考试通过率多少?

TOGAF培训什么内容&#xff1f;参加TOGAF培训有什么好处&#xff1f;考试通过率多少&#xff1f; TOGAF培训哪些内容&#xff1f; 通过本课程&#xff0c;你将掌握TOGAF的理论和实践&#xff0c;理解企业架构的影响&#xff0c;能够评估、启动、设 计、执行新一轮企业和IT架构…...

keepalived HA nginx方案

安装 centos: yum -y install epel-release yum -y install nginx keepalivedkeepalived配置解析 /etc/keepalived/keepalived.conf ! Configuration File for keepalived # 全局变量 global_defs {router_id nginx_ha # 主从保持一致script_user root # 执行健康检查的…...

报错:pathspec ‘xxx‘ did not match any file(s) known to git

在 escode 中进行分支切换时报如下错误 PS > git checkout xxx error: pathspec xxx did not match any file(s) known to git远程分支已经在 gitlab 客户端手动创建&#xff0c;在 escode 中也使用了拉取之类的操作&#xff0c;但是切换分支时依然报错。 解决方案 查看分…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;采用DevEco Studio实现&#xff0c;包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

Python常用模块:time、os、shutil与flask初探

一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...