当前位置: 首页 > news >正文

数据结构之算法的时间复杂度

1.时间复杂度的定义

在计算机科学中,算法的时间复杂度是一个函数,它定量描述了算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比列,算法中的基本操作的执行次数,为算法的时间复杂度

例1:

计算Func1中++count执行的次数

void Func1(int N)
{int count = 0;for(int i = 0; i < N; ++i){for(int j = 0; j < N; ++j){++count;}}for(int i = 0; i < 2 * N; ++i){++count;}int M = 10;while(M--){++count;    }printf("%d\n", count);
}

Func1的基本操作次数:F(N) = N^2 + 2 * N + 10来分析一下是为什么?

首先可以看到这段代码有三个循环

第一个是由两个for内外嵌套组成:每次循环N次,执行了N次,即N + N + N.....=N * N = N^2

第二个循环执行了 2*N

第三个循环执行了 10

如果每个时间复杂度都要这么表示的话那太复杂了,所以我们只取最大量级来表示这段代码的时间复杂度

当N  = 10时:F(N) = 130

当N = 20时:F(N) = 10210

当N = 30时:F(N) = 1002010

当我们的N取无穷大时 2 * N + 10这两个项对结果的影响已经不大了可以忽略不计,所以说只需要取N^2来表示它的时间复杂度就可以了

所以这段代码Func1的时间复杂度为: O(N ^ 2)

2.大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号

推导大O阶方法:

(1).用常数1来取代运行时间中的所有加法常数

(2).在修改后的运行次数的函数中,只保留最高阶项

(3).如果最高阶存在且不是1,则去除与这个项目相乘的常数,得到的结果就是大O阶

通过上面一个例子我们可以发现大O渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数

我们来计算几道代码的时间复杂度

例1:

void Func2(int N)
{int count = 0;for(int i = 0; i < 2 * N; i++){++count;}int M = 10;while(M--){++count; }printf("%d", count);
}

F(N) = 2 * N +10

去掉与最高阶相乘的常熟和10使用大O渐进法表示法该段代码的时间复杂度为:O(N)

例2:

void Func3(int M, int N)
{int count = 0;for(int i = 0; i < M; i++){++count;}for(int j = 0; j < N; j++){++count;}printf("%d\n", count);
}

使用大O渐进法表示法该段代码的时间复杂度为:O(N + M)

因为M和N是未知的所以不能去掉它们两个任意一个

如果N大于M,则可以去掉M,反之可以去掉N,相等可任取M和N中任何一个

例3:

void Func4(int N)
{int count = 0;for(i = 0; i < 100: i++){++count;}printf("%d\n", count);
}

F(N) = 100

执行了100次,但是我们用1来表示

使用大O渐进法表示法该段代码的时间复杂度为:O(1)  

注:这里的1表示代表1次,而是常数次

3.时间复杂度的最好,最坏和平均情况

另外有些算法的时间复杂度存在最好,平均,最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模最小运行次数(下界)

例4:

char* strchr(const char * str, int character)
{while(*Str){if(*str == character){return str;}str++;}return NULL;
}

例如:在一个长度为N的数组中找一个数据x

最好情况:1次找到

平均情况:N/2次找到

最坏情况:N次找到

在实际情况中一般关注的是算法的最坏运行情况,所以该段代码的时间复杂度为:O(N)

例5:

void BubbleSort(int *a, int n)
{assert(a);for(int end = n; end > 1; --end){for(int i = 1; i < end; i++){if(a[i - 1] > a[i]){int tmp = a[i];a[i] = a[i + 1];a[i + 1] = tmp;}}}
}

最好情况:O(N)

最坏情况将两个for循环跑满

外循环为n时,内循环循环n - 1次  然后按顺序n - 2, n-3, ....., 3, 2, 1通过判断可以知道这是一个等差数列,所以它的总和就为:n(n - 1 + 1)/2 = n^2*1/2 即最坏情况:O(N^2)

使用大O渐进法表示法去掉常数该段代码的时间复杂度为:O(N^2)  

例6:

在数组有序的情况下:可以使用二分法(折半查找)

int binarysearch(int *a,int n, int x)
{int begin = 0;int end = n - 1;while(begin <= end){int mid = begin + ((end - begin)>>1);if(a[mid] > x){end = a[mid] - 1;}else if(a[mid] < x){begin = a[mid] + 1;}else{return mid;}}return -1;
}

最好情况:O(1)

最坏情况:区间缩放到一个值,要么找到,要么找不到,假设N为数组个数,x是最坏查找次数N每次除2就等于查找一次,折半查找多少次就除多少个2

N/2/2/2..../2 = 1, 因为n为int所以最小二分到1,2^x = N 即:x = logN(log在时间复杂度中表示以2为底)所以最坏情况:O(logN)

例7:

long long fac(size_t N)
{if(N == 0)return 1;elsereturn fac(N - 1) * N;
}

使用大O渐进法表示法该段代码的时间复杂度为:O(N)

例8:

long long Fib(int n)
{if(n < 3){return 1;}else{return Fib(n - 1) + Fib(n - 2);}
}

最好情况:O(1)

可以观察到该递归的方式为等差数列我们用求和公式可以得出:2^(N-1)-1

最坏情况用大O渐进表示法:O(2^N)

总结以上时间复杂度:O(1)>O(logN)>O(N)>O(N^2)>O(N^3)>O(2*N)

相关文章:

数据结构之算法的时间复杂度

1.时间复杂度的定义 在计算机科学中&#xff0c;算法的时间复杂度是一个函数&#xff0c;它定量描述了算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比列&#xff0c;算法中的基本操作的执行次数&#xff0c;为算法的时间复杂度 例1&#xff1a; 计算Func1…...

unity中物体被激活自动执行挂载代码

在Unity中,如果希望当物体被激活时自动执行特定的函数,可以利用 MonoBehaviour 的生命周期函数 OnEnable()。这个方法会在对象被激活时调用,可以用来执行初始化或者处理其他逻辑。以下是如何在脚本中使用 OnEnable() 方法: using UnityEngine;public class ActivateFuncti…...

Pandas数据可视化详解:大案例解析(第27天)

系列文章目录 Pandas数据可视化解决不显示中文和负号问题matplotlib数据可视化seaborn数据可视化pyecharts数据可视化优衣库数据分析案例 文章目录 系列文章目录前言1. Pandas数据可视化1.1 案例解析&#xff1a;代码实现 2. 解决不显示中文和负号问题3. matplotlib数据可视化…...

Redis基础教程(七):redis列表(List)

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…...

鸿蒙开发:Universal Keystore Kit(密钥管理服务)【生成密钥(C/C++)】

生成密钥(C/C) 以生成ECC密钥为例&#xff0c;生成随机密钥。具体的场景介绍及支持的算法规格。 注意&#xff1a; 密钥别名中禁止包含个人数据等敏感信息。 开发前请熟悉鸿蒙开发指导文档&#xff1a;gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复…...

ssm“落雪”动漫网站-计算机毕业设计源码81664

目 录 摘要 1 绪论 1.1 研究背景 1.2 研究意义 1.3论文结构与章节安排 2系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1 数据新增流程 3.2.2 数据删除流程 2.3 系统功能分析 2.3.1 功能性分析 2.3.2 非功能性分析 2.4 系统用例分析 2.5本章小结 3 系统总体设…...

【面试题】Reactor模型

Reactor模型 定义 Reactor模型是一种事件驱动的设计模式&#xff0c;用于处理服务请求。它通过将事件处理逻辑与事件分发机制解耦&#xff0c;实现高性能、可扩展的并发处理。Reactor模型适用于高并发、事件驱动的程序设计&#xff0c;如网络服务器等。 特点 事件驱动&#…...

RedHat9 | kickstart无人值守批量安装

一、知识补充 kickstart Kickstart是一种用于Linux系统安装的自动化工具&#xff0c;它通过一个名为ks.cfg的配置文件来定义Linux安装过程中的各种参数和设置。 kickstart的工作原理 Kickstart的工作原理是通过记录典型的安装过程中所需人工干预填写的各种参数&#xff0c;…...

k8s-第五节-StatefulSet

StatefulSet StatefulSet 是用来管理有状态的应用&#xff0c;例如数据库。 前面我们部署的应用&#xff0c;都是不需要存储数据&#xff0c;不需要记住状态的&#xff0c;可以随意扩充副本&#xff0c;每个副本都是一样的&#xff0c;可替代的。 而像**数据库、Redis **这类…...

ai机器狗

ai机器狗的代码很早就开源了&#xff0c;相当于核心&#xff0c;最难东西美国人公开了&#xff0c;开源了&#xff0c;如果有钱&#xff0c;有足够资源的&#xff0c;造出东西有可能比公开这些核心代码的公司或者组织还好。没有技术含量&#xff0c;技术含量别人都解决了&#…...

数据库关键字执行顺序

在 SQL 中&#xff0c;关键字的执行顺序通常如下&#xff1a; FROM&#xff1a;确定要查询的表或数据源&#xff0c;并执行表之间的连接操作&#xff08;如 INNER JOIN、LEFT JOIN 等&#xff09;。FROM 子句执行顺序为从后往前、从右到左。ON&#xff1a;应用连接条件&#xf…...

Linux 永久挂载磁盘

文章目录 前言一、使用步骤1.命令 总结 前言 一、使用步骤 1.命令 第一步&#xff1a;创建挂载点 sudo mkdir /hhkj 第二步&#xff1a;磁盘挂载到挂载点&#xff08;lsblk、lvdisplay&#xff09; sudo mount /dev/sdb2 /hhkj 或者 sudo mount /dev/centos/home /hhkj 第三…...

windows启动Docker闪退Docker desktop stopped

Windows启动Docker闪退-Docker desktop stopped 电脑上很早就安装有Docker了&#xff0c;但是有一段时间都没有启动了&#xff0c;今天想启动启动不起来了&#xff0c;打开没几秒就闪退&#xff0c;记录一下解决方案。仅供参考 首先&#xff0c;参照其他解决方案&#xff0c;本…...

探索Redis GEOMETRY数据结构:地理空间索引与查询(基于Redis GEO和Java实现附近商户查找功能)

摘要 Redis是一个高性能的键值存储系统&#xff0c;广泛应用于缓存、消息队列、排行榜等场景。本文将介绍Redis中一个假设的GEOMETRY数据结构&#xff0c;用于高效地存储和查询地理空间数据。 1. Redis地理空间数据结构概述 地理空间数据结构允许用户存储地理位置信息&#…...

DP学习——策略模式

学而时习之&#xff0c;温故而知新。 敌人出招&#xff08;使用场景&#xff09; 业务中需要多个算法可替换&#xff0c;而不能重构代码时&#xff0c;怎么办&#xff1f;或者一个对象在运行中要根据业务切换不同的模式或者采用不同的算法&#xff0c;怎么办&#xff1f; 到…...

0701_ARM5

练习&#xff1a;使用usart4 main.c #include "uart4.h"int main() {// 初始化 UART4hal_uart4_init();while (1) {// 发送一个字符串//hal_put_char( hal_get_char());hal_put_string(hal_get_string());}return 0; } usart4.c #include "uart4.h"//**…...

Python用户宝典:了解并实现遗传算法

遗传算法是一种基于自然选择的技术&#xff0c;用于解决复杂问题。由于问题很复杂&#xff0c;遗传算法&#xff08;而不是其他方法&#xff09;被用来得出解决问题的合理方案。本文介绍遗传算法的基础知识以及如何用Python来实现。 遗传算法的要素 适应度函数 适应度函数衡…...

如何使用深度学习进行实时目标检测:速度与精度的双重挑战

如何使用深度学习进行实时目标检测&#xff1a;速度与精度的双重挑战 目标检测作为计算机视觉领域的核心任务之一&#xff0c;其目的是在图像或视频中识别和定位感兴趣的对象。随着深度学习技术的发展&#xff0c;基于深度学习的目标检测算法在实时性、准确性方面取得了显著进…...

创新引领,构筑产业新高地

在数字经济的浪潮中&#xff0c;成都树莓集团以创新驱动为核心&#xff0c;通过整合行业资源、优化服务、培养数字产业人才等措施&#xff0c;致力于打造产业高地&#xff0c;推动地方经济的高质量发展。 一、创新驱动&#xff0c;引领产业发展 1、引入新技术、新模式&#xf…...

npm,yarn清楚缓存

1.运行以下命令来清理npm缓存&#xff1a; npm cache clean --force或者运行以下命令清理Yarn缓存&#xff1a; yarn cache clean2.删除 node_modules 和锁文件&#xff1a; 删除 node_modules 目录和 package-lock.json 或 yarn.lock 文件&#xff0c;然后重新安装依赖 rm …...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...