数据结构之算法的时间复杂度
1.时间复杂度的定义
在计算机科学中,算法的时间复杂度是一个函数,它定量描述了算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比列,算法中的基本操作的执行次数,为算法的时间复杂度
例1:
计算Func1中++count执行的次数
void Func1(int N)
{int count = 0;for(int i = 0; i < N; ++i){for(int j = 0; j < N; ++j){++count;}}for(int i = 0; i < 2 * N; ++i){++count;}int M = 10;while(M--){++count; }printf("%d\n", count);
}
Func1的基本操作次数:F(N) = N^2 + 2 * N + 10来分析一下是为什么?
首先可以看到这段代码有三个循环
第一个是由两个for内外嵌套组成:每次循环N次,执行了N次,即N + N + N.....=N * N = N^2 次
第二个循环执行了 2*N 次
第三个循环执行了 10 次
如果每个时间复杂度都要这么表示的话那太复杂了,所以我们只取最大量级来表示这段代码的时间复杂度
当N = 10时:F(N) = 130
当N = 20时:F(N) = 10210
当N = 30时:F(N) = 1002010
当我们的N取无穷大时 2 * N + 10这两个项对结果的影响已经不大了可以忽略不计,所以说只需要取N^2来表示它的时间复杂度就可以了
所以这段代码Func1的时间复杂度为: O(N ^ 2)
2.大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号
推导大O阶方法:
(1).用常数1来取代运行时间中的所有加法常数
(2).在修改后的运行次数的函数中,只保留最高阶项
(3).如果最高阶存在且不是1,则去除与这个项目相乘的常数,得到的结果就是大O阶
通过上面一个例子我们可以发现大O渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数
我们来计算几道代码的时间复杂度
例1:
void Func2(int N)
{int count = 0;for(int i = 0; i < 2 * N; i++){++count;}int M = 10;while(M--){++count; }printf("%d", count);
}
F(N) = 2 * N +10
去掉与最高阶相乘的常熟和10使用大O渐进法表示法该段代码的时间复杂度为:O(N)
例2:
void Func3(int M, int N)
{int count = 0;for(int i = 0; i < M; i++){++count;}for(int j = 0; j < N; j++){++count;}printf("%d\n", count);
}
使用大O渐进法表示法该段代码的时间复杂度为:O(N + M)
因为M和N是未知的所以不能去掉它们两个任意一个
如果N大于M,则可以去掉M,反之可以去掉N,相等可任取M和N中任何一个
例3:
void Func4(int N)
{int count = 0;for(i = 0; i < 100: i++){++count;}printf("%d\n", count);
}
F(N) = 100
执行了100次,但是我们用1来表示
使用大O渐进法表示法该段代码的时间复杂度为:O(1)
注:这里的1表示代表1次,而是常数次
3.时间复杂度的最好,最坏和平均情况
另外有些算法的时间复杂度存在最好,平均,最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模最小运行次数(下界)
例4:
char* strchr(const char * str, int character)
{while(*Str){if(*str == character){return str;}str++;}return NULL;
}
例如:在一个长度为N的数组中找一个数据x
最好情况:1次找到
平均情况:N/2次找到
最坏情况:N次找到
在实际情况中一般关注的是算法的最坏运行情况,所以该段代码的时间复杂度为:O(N)
例5:
void BubbleSort(int *a, int n)
{assert(a);for(int end = n; end > 1; --end){for(int i = 1; i < end; i++){if(a[i - 1] > a[i]){int tmp = a[i];a[i] = a[i + 1];a[i + 1] = tmp;}}}
}
最好情况:O(N)
最坏情况将两个for循环跑满
外循环为n时,内循环循环n - 1次 然后按顺序n - 2, n-3, ....., 3, 2, 1通过判断可以知道这是一个等差数列,所以它的总和就为:n(n - 1 + 1)/2 = n^2*1/2 即最坏情况:O(N^2)
使用大O渐进法表示法去掉常数该段代码的时间复杂度为:O(N^2)
例6:
在数组有序的情况下:可以使用二分法(折半查找)
int binarysearch(int *a,int n, int x)
{int begin = 0;int end = n - 1;while(begin <= end){int mid = begin + ((end - begin)>>1);if(a[mid] > x){end = a[mid] - 1;}else if(a[mid] < x){begin = a[mid] + 1;}else{return mid;}}return -1;
}
最好情况:O(1)
最坏情况:区间缩放到一个值,要么找到,要么找不到,假设N为数组个数,x是最坏查找次数N每次除2就等于查找一次,折半查找多少次就除多少个2
N/2/2/2..../2 = 1, 因为n为int所以最小二分到1,2^x = N 即:x = logN(log在时间复杂度中表示以2为底)所以最坏情况:O(logN)
例7:
long long fac(size_t N)
{if(N == 0)return 1;elsereturn fac(N - 1) * N;
}
使用大O渐进法表示法该段代码的时间复杂度为:O(N)
例8:
long long Fib(int n)
{if(n < 3){return 1;}else{return Fib(n - 1) + Fib(n - 2);}
}
最好情况:O(1)

可以观察到该递归的方式为等差数列我们用求和公式可以得出:2^(N-1)-1
最坏情况用大O渐进表示法:O(2^N)
总结以上时间复杂度:O(1)>O(logN)>O(N)>O(N^2)>O(N^3)>O(2*N)

相关文章:
数据结构之算法的时间复杂度
1.时间复杂度的定义 在计算机科学中,算法的时间复杂度是一个函数,它定量描述了算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比列,算法中的基本操作的执行次数,为算法的时间复杂度 例1: 计算Func1…...
unity中物体被激活自动执行挂载代码
在Unity中,如果希望当物体被激活时自动执行特定的函数,可以利用 MonoBehaviour 的生命周期函数 OnEnable()。这个方法会在对象被激活时调用,可以用来执行初始化或者处理其他逻辑。以下是如何在脚本中使用 OnEnable() 方法: using UnityEngine;public class ActivateFuncti…...
Pandas数据可视化详解:大案例解析(第27天)
系列文章目录 Pandas数据可视化解决不显示中文和负号问题matplotlib数据可视化seaborn数据可视化pyecharts数据可视化优衣库数据分析案例 文章目录 系列文章目录前言1. Pandas数据可视化1.1 案例解析:代码实现 2. 解决不显示中文和负号问题3. matplotlib数据可视化…...
Redis基础教程(七):redis列表(List)
💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 💝Ὁ…...
鸿蒙开发:Universal Keystore Kit(密钥管理服务)【生成密钥(C/C++)】
生成密钥(C/C) 以生成ECC密钥为例,生成随机密钥。具体的场景介绍及支持的算法规格。 注意: 密钥别名中禁止包含个人数据等敏感信息。 开发前请熟悉鸿蒙开发指导文档:gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复…...
ssm“落雪”动漫网站-计算机毕业设计源码81664
目 录 摘要 1 绪论 1.1 研究背景 1.2 研究意义 1.3论文结构与章节安排 2系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1 数据新增流程 3.2.2 数据删除流程 2.3 系统功能分析 2.3.1 功能性分析 2.3.2 非功能性分析 2.4 系统用例分析 2.5本章小结 3 系统总体设…...
【面试题】Reactor模型
Reactor模型 定义 Reactor模型是一种事件驱动的设计模式,用于处理服务请求。它通过将事件处理逻辑与事件分发机制解耦,实现高性能、可扩展的并发处理。Reactor模型适用于高并发、事件驱动的程序设计,如网络服务器等。 特点 事件驱动&#…...
RedHat9 | kickstart无人值守批量安装
一、知识补充 kickstart Kickstart是一种用于Linux系统安装的自动化工具,它通过一个名为ks.cfg的配置文件来定义Linux安装过程中的各种参数和设置。 kickstart的工作原理 Kickstart的工作原理是通过记录典型的安装过程中所需人工干预填写的各种参数,…...
k8s-第五节-StatefulSet
StatefulSet StatefulSet 是用来管理有状态的应用,例如数据库。 前面我们部署的应用,都是不需要存储数据,不需要记住状态的,可以随意扩充副本,每个副本都是一样的,可替代的。 而像**数据库、Redis **这类…...
ai机器狗
ai机器狗的代码很早就开源了,相当于核心,最难东西美国人公开了,开源了,如果有钱,有足够资源的,造出东西有可能比公开这些核心代码的公司或者组织还好。没有技术含量,技术含量别人都解决了&#…...
数据库关键字执行顺序
在 SQL 中,关键字的执行顺序通常如下: FROM:确定要查询的表或数据源,并执行表之间的连接操作(如 INNER JOIN、LEFT JOIN 等)。FROM 子句执行顺序为从后往前、从右到左。ON:应用连接条件…...
Linux 永久挂载磁盘
文章目录 前言一、使用步骤1.命令 总结 前言 一、使用步骤 1.命令 第一步:创建挂载点 sudo mkdir /hhkj 第二步:磁盘挂载到挂载点(lsblk、lvdisplay) sudo mount /dev/sdb2 /hhkj 或者 sudo mount /dev/centos/home /hhkj 第三…...
windows启动Docker闪退Docker desktop stopped
Windows启动Docker闪退-Docker desktop stopped 电脑上很早就安装有Docker了,但是有一段时间都没有启动了,今天想启动启动不起来了,打开没几秒就闪退,记录一下解决方案。仅供参考 首先,参照其他解决方案,本…...
探索Redis GEOMETRY数据结构:地理空间索引与查询(基于Redis GEO和Java实现附近商户查找功能)
摘要 Redis是一个高性能的键值存储系统,广泛应用于缓存、消息队列、排行榜等场景。本文将介绍Redis中一个假设的GEOMETRY数据结构,用于高效地存储和查询地理空间数据。 1. Redis地理空间数据结构概述 地理空间数据结构允许用户存储地理位置信息&#…...
DP学习——策略模式
学而时习之,温故而知新。 敌人出招(使用场景) 业务中需要多个算法可替换,而不能重构代码时,怎么办?或者一个对象在运行中要根据业务切换不同的模式或者采用不同的算法,怎么办? 到…...
0701_ARM5
练习:使用usart4 main.c #include "uart4.h"int main() {// 初始化 UART4hal_uart4_init();while (1) {// 发送一个字符串//hal_put_char( hal_get_char());hal_put_string(hal_get_string());}return 0; } usart4.c #include "uart4.h"//**…...
Python用户宝典:了解并实现遗传算法
遗传算法是一种基于自然选择的技术,用于解决复杂问题。由于问题很复杂,遗传算法(而不是其他方法)被用来得出解决问题的合理方案。本文介绍遗传算法的基础知识以及如何用Python来实现。 遗传算法的要素 适应度函数 适应度函数衡…...
如何使用深度学习进行实时目标检测:速度与精度的双重挑战
如何使用深度学习进行实时目标检测:速度与精度的双重挑战 目标检测作为计算机视觉领域的核心任务之一,其目的是在图像或视频中识别和定位感兴趣的对象。随着深度学习技术的发展,基于深度学习的目标检测算法在实时性、准确性方面取得了显著进…...
创新引领,构筑产业新高地
在数字经济的浪潮中,成都树莓集团以创新驱动为核心,通过整合行业资源、优化服务、培养数字产业人才等措施,致力于打造产业高地,推动地方经济的高质量发展。 一、创新驱动,引领产业发展 1、引入新技术、新模式…...
npm,yarn清楚缓存
1.运行以下命令来清理npm缓存: npm cache clean --force或者运行以下命令清理Yarn缓存: yarn cache clean2.删除 node_modules 和锁文件: 删除 node_modules 目录和 package-lock.json 或 yarn.lock 文件,然后重新安装依赖 rm …...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
